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ABSTRACT. In chemical engineering, several processes are represented by singular 
boundary value problems. In general, classical numerical methods fail to produce good 
approximations for the singular boundary value problems. In this paper, Chebyshev finite 
difference (ChFD) method and DTM-Pad´e method, which is a combination of differential 
transform method (DTM) and Pad´e approximant, are applied for solving singular boundary 
value problems arising in the reaction cum diffusion process in a spherical biocatalyst. ChFD 
method can be regarded as a non-uniform finite difference scheme and DTM is a numerical 
method based on the Taylor series expansion, which constructs an analytical solution in the 
form of a polynomial. The main advantage of DTM is that it can be applied directly to 
nonlinear ordinary without requiring linearization, discretization or perturbation. Therefore, it 
is not affected by errors associated to discretization. The results obtained, are in good 
agreement with those obtained numerically or by optimal homotopy analysis method. 
 
Keywords: Diffusion-Reaction; Biocatalyst; Effectiveness factor; Differential transform 
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1. INTRODUCTION 

Nowadays, boundary value problems (BVPs) appear more and more frequently in different 
research areas and engineering applications [1, 2, 3, 4, 5, 6]. In chemical engineering, 
several processes, e.g. isothermal and non-isothermal reaction diffusion process inside a 
porous cylindrical/spherical catalysts [7], solidification of cylindrical/spherical objects [8] 
and radial heat transfer from cylindrical/spherical bodies [9] are all represented by singular 
BVPs. Solving the nonlinear singular BVPs accurately and efficiently is considered a very 
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important issue. However, it is also very difficult since the nonlinearity and the presence of 
singularity. In general, classical numerical methods fail to produce good approximations for 
the singular BVPs. In this paper, we apply two known techniques, DTMPad´e method, 
and Chebyshev finite difference (ChFD) method, to solve one such problem. For 
demonstration, the reaction-diffusion process inside biocatalysts (cells and enzymes) has 
been solved with the Michaelis-Menten kinetics [10, 11]. The resulting problem is a 
nonlinear singular BVP [10, 12]. 

DTMPad´e technique is a combination of the differential transform method (DTM) 
and the Pad´e approximations. The concept of DTM was first introduced by [13] for the 
solution of linear and non-linear initial value problems in electrical circuit theory 
applications. The main advantage of DTM is that it can be applied directly to nonlinear 
ordinary without requiring linearization, discretization or perturbation. Therefore, it is not 
affected by errors associated to discretization. This method is a semi-numerical and semi-
analytic technique that formalizes the Taylor series in a totally different manner. In the 
traditional Taylor series method, there requires symbolic computation of the necessary 
derivatives and is not always formidable as the order becomes large. However, DTM 
obtains a polynomial series solution by means of an iterative procedure [13, 14]. Recently, 
status of the differential transformation method has been discussed in [15]. There are many 
works on DTM (see for example [15] and the references therein). 

 ChFD method can be regarded as a non-uniform finite difference scheme. This 
method has proven to be successful in the numerical solution of various boundary value 
problems. In this method the derivatives of the function ( )y t  at a point jt is linear 

combination of the values of the function y  at the Gauss–Lobatto points cos( / )kt k N , 
where 0,1,2,..., ,k N  and j  is an integer  0 j N   [4, 5, 6]. 

 The paper has been organized as follows: In the next section, the mathematical 
formulation is introduced and in Section 3, the basic concepts of DTM and Pad´e 
approximations are presented. In Section 4, we describe the basic formulation of ChFD 
method. Section 5 applies DTM-Pad´e and ChFD methods to the considered problem. Also, 
numerical results are given and compared with other results reported previously. A brief 
conclusion is given in Section 6. 
 
2. PROBLEM FORMULATION 

Many chemical reactions take place inside a catalyst pellet, which is a porous material. As 
Ref. [10], consider an inert permeable spherical solid particle. Also we assumed that the 
biochemical reaction follows Michaelis-Menten kinetics. The application of mass balance 
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for the substrate (A) over a thin spherical shell inside the biocatalyst yields the following 
model equation [7, 10] 
 

2

2

2 ,A A m A
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m A

d C dC r CD
dr r dr K C

 
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                                                                                    (1) 

 

where AC  denotes the concentration of substrate, eD  is an effective diffusivity, r  is the 

radial distance, mr is a maximum reaction rate and mK  is the MichaelisMenten constant. 
The two boundary conditions are  
    

, at  r = R (catalyst surface)A ASC C                                                                            (2) 
 
and 
 

0, at  r = 0. (center of the catalyst)AdC
dr

                                                                     (3) 

 

Normalizing Eq. (1) using the following dimensionless variables [7, 10], i.e. 
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gives the following dimensionless equation 
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The boundary conditions for Eq. (5) are  
 

                                        ,1)1( y              (catalyst surface)                                               (6) 
 

                                
0

0.
x

dy
dx 

          (center of the catalyst)                                            (7)   

 

Here,   denote the Thiele modulus and 2 signifies the ratio of the intrinsic chemical 
reaction rate in the absence of mass transfer limitation to the rate of diffusion through the 
catalyst [10], i.e.  
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                            2 reaction rate at the catalyst surface .
diffusion rate through the catalyst pores

   

 

Also, the ratio of the observed reaction rate to the rate in the absence of intraparticle 
mass and heat transfer resistance is defined as the effectiveness factor )(  [12]. For a 
spherical catalyst, the effectiveness factor is given by [11]: 

                                                                 2
1

3 .
x

dy
dx


 

                                                       (8) 

As, pointed by [12], except for a few cases, the analytic solution of the boundary value 
problem (1)-(3), is in general, not feasible, and the problem can only be solved numerically. 
In [10] the optimal homotopy analysis method (OHAM) has been applied for solving 
problem (1)(3). Gottifredi and Gonzo [11] applied asymptotic matching approach to solve 
the same problem but in a slab geometry. Homotopy analysis method [16] and Adomian 
decomposition method [17] have been applied, again for a slab catalyst. Also, for spherical 
catalyst, the restarted Adomian decomposition method has been used in [18]. In [19], in 
several geometries and kinetics, an implementation of the SincGalerkin scheme is used to 
approximate effectiveness factor and concentration profile of key component when a single 
independent reaction takes place in a porous catalyst structure where enzymes are 
immobilized. The authors of [20] developed a robust numerical method for computing the 
effectiveness factor of a heterogeneous reaction in a catalyst. The method is based on 
shooting at the outer surface of the catalyst and is optimized for an accurate estimation of 
the concentration gradient at the outer surface. Also, in [12] an efficient method for 
computing approximate value of the effectiveness factor for an arbitrary rate expression and 
for three representative catalyst shapes, namely, an infinite slab, an infinite cylinder and a 
sphere is presented. 
 

3. DIFFERENTIAL TRANSFORMATION METHOD ANALYSIS 

The basic definition of the differential transform method is given as follows: 
Differential transform of function ( )y x  is defined as: 

0

1 ( )( ) ,
!

k

k
x

y xY k
k dx

d


 
  

 
                                                                                                       (9) 

where )(xy is the original function and )(kY  is the transformed function. The inverse 
differential transform of )(kY  is given by 

0

( ) ( ) .k
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y x Y k x
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                                                                                                               (10) 
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Combining  Eqs.  (9) and (10) we have: 

0 0

( )( )
!

kk

k
k x

y xxy x
k dx

d
 

  
  
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 .                                                                                                 (11) 

 
It is clear that the concept of DTM is based upon the Taylor series expansion. 

However, the DTM does not evaluate the derivatives symbolically. In practical 
applications, the function )(xy  is expressed by a finite series and Eq. (10) can be rewritten 
as follows: 

 

(ݔ)ݕ = ∑ ௞,ேݔ(݇)ܻ
௞ୀ଴                                                                                                          (12) 

 

which means that 
1

( ) ( ) k
k N

y x Y k x


 
 is negligibly small. Some of the fundamental 

operations performed by differential transform method are listed in Table 1. 
 
3. 1. THE PADE APPROXIMATIONS 

Given a function ( )f x  expanded in a Maclaurin series 
0

( ) i
ii

f x a x


 . A Pad´e 

approximant is a rational function and the notation for such a Pad´e approximant is: 
 

[L, M]=
( ) ,
( )

L

M

xP
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                                                                                                                 (13) 

 

where ( )L xP   is a polynomial of degree at most L  and ( )M xQ  is a polynomial of degree at 
most M . Let 
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L Lx x x xP P P P P                                                                                      (14) 
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are given. We note that there are 1L  independent coefficients in the numerator and 

1M  coefficients in the denominator. To make the system determinable, let 0 1q  . We 
then have M  independent coefficients in the denominator and 1 ML  independent 
coefficients in all. Now the ],[ ML  approximant can fit the power series through orders 

21, , , , L Mx x x  with an error of 1( )L MO x   . Consequently  
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By cross-multiplying Eq. (16), we find that  

   2 2 12
0 1 20 1 21 21 ( ).L L MM
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                                                                                                                                           (17) 
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Equating coefficients of 1 2, , ,L L L Mx x x    in turn, we can write  

1 2 11 0,
L M L M LMM qq a a a         

2 1 3 2 0,M L M M L M Lq a q a a          

               

1 1 ... 0.M L M L L Mq a q a a       

Thus, we have M linear equations for the M coefficients in the denominator. These 
linear equations can be solved for the unknown sq' . Also, we can equate coefficients of 

21, , ,..., lx x x to get 0 1, , , LP P P . We have  
 

଴ܲ = ܽ଴, 
ଵܲ = ܽଵ +  ,ଵܽ଴ݍ 
ଶܲ = ܽଶ + ଵܽଵݍ  +  ,ଶܽ଴ݍ

 
   
 

௅ܲ = ܽ௅ + ෍ ௅ܽ௅ି௞ݍ
ெ௜௡{ெ,௅}

௞ୀଵ
. 

 

Thus the numerator and denominator of the Pad´e approximants are determined. It is 
worthy to mention here that, each choice of L and M leads to an approximants. The major 
difficulty in applying the technique is how to direct the choice in order to obtain the best 
approximant. A criterion which has worked well here is the choice of ],[ ML  approximants 
such that ML  , [21]. The details of Pad´e approximants may be found in [22]. In this 
paper, we construct the approximants using Maple software. 
 
                                  Table 1: The fundamental operations of DTM. 

Original function Transformed function 
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4.        CHEBYSHEV FINITE DIFFERENCE METHOD 

The well known Chebyshev polynomials of the first kind of degree n  are defined on the 
interval [ 1,1]  as, 1( ) cos( cos ( )), 0,1,....nT t n t n   Obviously 0( ) 1,T t =  1( )T t t=   and 

they satisfy the recurrence relations: 
 

1 1( ) 2  ( ) ( ),             1, 2, ...nn nT t t T t T t n+ -= - =  
 
We choose the grid (interpolation) points to be the extrema 
 

cos , 0,1,2,..., ,k
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N
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 
    

 

of the Nth order Chebyshev polynomial ( )NT t . These grids, 1 1 01 ... 1N Nt t t t         

are viewed as the zeros of )()21( tTt   where dtdTtT /)(  . These grids, are also called 
the well known ChebyshevGaussLobatto points. The authors of [23] introduced the 
following approximation of the function ( )y t : 
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                                                                       (18) 

 
The summation symbol with double primes denotes a sum with both the first and last terms 
halved. The first and second derivatives of the function ( )y t  at the point kt  are given by [4] 
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with 0 1/ 2n   , 1j   for  1,2,..., 1j N  ,  and  2oc  ,  1ic   for 1i  . It is easily 

seen from (19) that the first and second derivatives of the function ( )y t at any point from 
the Gauss–Lobatto nodes are expanded as linear combination of the values of the function 
at these points. 
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5.        APPLICATIONS AND NUMERICAL RESULTS 

In this section, we will apply the DTM-Pad´e method and ChFD method to the boundary 
value problem (5)(7).  
 
5.1        APPLING THE DTMPAD´E  METHOD  

Taking differential transform of Eq. (5), one can obtain 
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where )(kY  is the differential transformations of function )(xy . From the boundary 
conditions (6) and (7) we get 





N

i
iY

0
,1)(                                                                                                                          (21) 

,0)1( Y                                                                                                                              (22) 
 

respectively. The values of ,,,2,1,0),( NiiY   can be obtained from Eqs. (20)(22). 
Using these values in Eq. (12), we obtain solution of the BVP given in Eqs. (5)(7). As an 
example for 2,1    and ,8N   by using Eq. (20) we obtain 

26 (2) 6 (2) (0) 2 8 (0) 0,(1)Y Y Y YY                                                                               (23) 
 

,0)1(8)2()1(8)0()3(12)3(12  YYYYYY                                                                    (24) 
 

220 (4) 20 (4) (3) 14 (1) (3) 6 8 (2) 0,(2)Y Y Y Y Y YY                                                     (25) 
 

,0)3(8)3()2(18)4()1(22)0()5(30)5(30  YYYYYYYY                                           (26) 
 

242 (6) 42 (6) (0) 32 (1) (5) 26 (2) (4) 12 8 (4) 0,(3)Y Y Y Y Y Y Y YY                              (27) 
 

,0)5(8)4()3(32)5()2(36)6()1(44)0()7(56)7(56  YYYYYYYYYY                    (28) 
 

272 (8) 72 (8) (0) 58 (1) (7) 48 (2) (6) 42 (3) (5) 20 8 (6) 0.(4)Y Y Y Y Y Y Y Y Y YY         (29) 
 

Solving the system of algebraic equations (21)(29), with the help of Maple, we get 
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(0) 0.488398, (1) 0, (2) 0.437516, (3) 0, (4) 0.078997,
(5) 0, (6) 0.004265, (7) 0, (8) 0.0006470.

Y Y Y Y Y
Y Y Y Y

    
      

                      (30)  

 
Using Eqs. (12) and (30) yield 
 

2 4 6 8( ) 0.488398 0.437516 0.078997 0.004265 0.000648y x x x x x     . 
 

The [4,4]  Pad´e approximant gives  
 

2 4

[4,4] 2 4

0.488398 0.440757 0.086077 .( )
1 0.006636 0.008551

x xy x
x x

 


 
                                                             (31) 

 

5. 2.       APPLING THE CHFD METHOD  

Since the Gauss–Lobatto nodes lie in the computational interval [ 1,1]   in the first step of 
ChFD method, the transformation 2 1t x   is used to change Eq. (5) to the following 
form: 
 

2
2

2
8 (1 )4 0

1 (1 )
d y dy y
dt t dt y






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 

,                                                                                     (32) 

 
also the boundary conditions (6) and (7) are changed to                                          
 

(1) 1,y                       ( 1) 0y   .                                                                                      (33) 
 

Now, to find the solution ( )y t  in (32), by applying the ChFD method, a collocation scheme 
is defined by substituting (18)  in (32) and evaluating the result at the Gauss–Lobatto nodes 

kt  for 1,2,..., 1k N   and using Eq.  (19), we get 

2(2) (1)
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
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           1,2,..., 1,k N                   (34) 

 
for 0k  and  k N  by using the boundary conditions (33)  we obtain 
 

0( ) 1,y t              (1)
,

0
( ) 0

N

N j j
j

d y t


 .                                                                                    (35) 

 

Therefore Eqs. (34)  and (35) generate a set of 1N   nonlinear algebraic equations, which 
can be solved for the unknown ( ), 0,...,ky t k N .  Consequently ( )y t  given in equation 
(18) can be calculated. 
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5. 3.       NUMERICAL RESULTS 

The following expressions are obtained for the same value of parameters )2,1(    by 
using OHAM [10] and by using the relation of Li et al. [24] 
 

2 4 6( ) 0.489948 0.437501 0.075384 0.002834 ,OHAM x x x xy                                           
2 3( ) 0.457427 0.418479 0.124094 ,Li x x xy                                                                     

 
respectively. Figure 1 shows the dimensionless concentration profiles computed by the 
DTMPad´e  method and ChFD method for 8N  together with those obtained by the 
approximate relation of Li et al. [24] and the result obtained by Danish et al. [10]. From 
Figure 1, we can see that the DTM-Pad´e method and ChFD method, are in good agreement 
with those obtained by OHAM.  Also, for 2  and different values of   and ,N  Table 2 
shows the value of effectiveness factor   obtained by the present methods, the numerical 
(eventual exact) method reported in [10], OHAM [10] and the relations provided by Li et 
al. [24]. Table 2 shows that the results obtained by present methods are in good agreement 
with those obtained numerically or by OHAM. Furthermore, in Figures 2 and 3 we 
calculate the following absolute residual error  
 

2
2

2

(1 )2Re ( ) ,
(1 )

N N N

N

dy y yds x
x dx ydx







  


 

 

for 2  and different values of N and  . Here, ( )N xy  is the computed result by using 
DTM-Pad´e method. The order of Pad´e approximation ],[ ML , is calculated with the 
following formula: 
 

/ 2 if even
( 1) / 2 if odd

N N
L M

N N


   
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Figure 1 : Comparison of dimensionless concentration profiles obtained by the ChFD 
method,  DTM-Pad´e  method,  the relation of Li et al. [24] and OHAM [10]. 
 

It can be seen from Figures 2 and 3 that |)(Re| xs  decrease by increasing N . 
Finally,  in Figure 4 the |)(Re| xs  is plotted for 2, 10N    and different values of  . 
Here, ( )N xy  is the computed result by using ChFD method. 

 
 

Table 2 : The values of effectiveness factor )(  obtained by different methods 

 
 

            

  

Numerical 
solution 

Li et al. 
[24] 

OHAM 
( 8n  ) 

[10] 

ChFD         DTM-Pad´e  

6N   8N   12N   16N   

2 1 0.8716 0.9069 0.8716 0.8716 0.8705 0.8716 0.8716 
2 10 0.9647 0.9673 0.9645 0.9647 0.9650 0.9641 0.9644 

 
 



58                                                              A. SAADATMANDI, N. NAFAR AND S. P. TOUFIGH 

 

 
Figure 2 : Plot of Re ( )s x  for 1, 2    and different values of N ,  for DTM-Pad´e  
method. 

 
Figure 3 : Plot of Re ( )s x  for 10, 2    and different values of N , for  DTM-Pad´e  
method. 
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Figure 4: Plot of Re ( )s x  for 2, 10N    and 1  (upper)  and 10  (down), for 
ChFD method. 
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5.         CONCLUSION 

The current study has successfully applied DTM-Pad´e and ChFD methods to solve 
nonlinear singular boundary value problems which frequently arise in chemical and 
biochemical engineering.  The results of both numerical methods are compared with those 
predicted by OHAM and with other results reported in the literature. The work emphasized 
our belief that these methods are reliable techniques to handle these types of problems. 
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