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ABSTRACT

I The Wiener index W(G) of a connected graph G is defined as the sum of the distances between I

all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a

| vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of |
eccentricities. Further we extend these results to the self-centered graphs.
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1. INTRODUCTION

The Wiener index W(G) of a connected graph G is defined as the sum the distances
between all unordered pairs of vertices of G. It was put forward by Harold Wiener [1]. The
Wiener index is a graph invariant intensively studied both in mathematics and chemical
literature. For details one may refer [2 — 13] and the reference cited therein.

Let G be a connected, simple graph with vertex set V(G). The degree of avertex vin
G is the number of edges incident to it and is denoted by deg(v). The distance between the
vertices u and v, denoted by d(u,v), is the length of the shortest path joining them. The
eccentricity e(v) of avertex v isthe distance to avertex farthest fromv, that is

e(v) = max{d(u,v) |u € V(G)}.

The radius r(G) of a graph G is the minimum eccentricity of the vertices and the
diameter d(G) of G is the maximum eccentricity. A vertex v is called central vertex of G if
e(V) =r(G). A graphis called self-centered if every vertex isacentral vertex. Thusin a self-
centered graph r(G) = d(G). An eccentric vertex of a vertex v is a vertex farthest away
from v. An eccentric path of avertex v denoted by P(v) is a path of length (V) joining v and
its eccentric vertex. There may exists more than one eccentric path for a given vertex.
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If vi, Vo, ..., vV, arethe vertices of graph G then the Wiener index of G is defined as

W(G)= Y d(v,v)).

1<i<j<n
The distance number of a vertex v; of agraph G denoted by d(v; | G) is defined as
d(v, |G) = i;‘d(vi V)
Therefore :
W(G) = %iznl:d(vi |G).

In this paper we obtain the Wiener index in terms of eccentricities. For graph
theoretic terminology we refer the book [14].

2. MAIN RESULTS

Theorem 2.1: Let G be a connected graph with n vertices, medgesand g = g(v), 1 = 1, 2,
..., N, then

W(G) > %[n(Zn—l) _om+ i@} . 1)

Equality holds if and only if for every vertex v; of G, if P(v;) is one of the eccentric
path of vi, then for every v; € V(G) whichis not on P(v;), d(v;, vj) < 2.

Proof: Let P(v;) be one of the eccentric path of v; € V(G).
Let  Au(vi) ={V; |V ison eccentric path P(v) of vi},
Ax(vi) ={v; | v is adjacent to v; and which is not on the eccentric path P(v;) of v},
As(vi) ={v; | vj isnot adjacent to v; and not on the eccentric path P(v;) of vi}.
Clearly  Aq(vi) U Ax(vi) U Ag(vi) =V(G)  and
A(vi)| =& +1,  |Ax(w)|=deg(vi) -1,  |As(vi)|=n—e —deg(v).

Now Zd(vi,vj):1+2+...+q:Q(Q;‘l)’
vieA(v)

Zd(vi ’Vj) = deg(vi)—l,
vieA (V)

Zd(vi 'Vj) 2 Z(n_ € - deg(vi)) .
vieA (Vi)
Therefore,
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d(v, 1G) = Y d(v,,v,)

= Yd(v,v)+ d.d(v,v)+ Dld(v,v))

V<A Y) vieA(v) viEAw)
> 88D 4 deg(y) -1+ 2 ~deg(y)
_ 2n—deg(vi)—1+@.
Therefore,
1 n
W(G)=§Zd(Vi |G)
i=1
zizn:[Zn—deg(vi)—hM}
2 & 2
1 - &(g -3
:§|:2n2 —2m—n+§T:|
:l{n(Zn—l)—ijL EM}
2 Z )
For equality,

Let G be a graph and P(v;) be one of the eccentric paths of v; eV(G). Let Ai(vi),
Ax(v)) and Ag(v;) be the sets as defined in the first part of the proof of this theorem.

Let d(vi, vj) =2, where v; € As(V).
Therefore > d(v,,v,) =2(n—g —deg(V,)),

vieAs (V)

Sdw.v)=3C ) g Sdw,v,) = deg(v) -1
V)= 2 i V;)=degly,

vieA (V) vieA ()

Thus
d(v, 1G) = Y d(v,v,)

= Yd(v,v)+ ddv,v)+ Dd(v,v))

vieA(v) vieh (V) vieA(vi)

:@mgg(vi)—u 2(n—e —deg(v,))

:2n—deg(vi)—1+@.

Hence
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W(G) =§id(vi 1G)

_13 _ .. e(E&-3
_2;[2n deg(v,) -1+ 5 }

1 - &(g -3
=§[2n2 —2m—n+;%}

zl{n(Zn—l) —2m+ Z—q (8 _3)} :
2 = 2
Conversdly,

Suppose G is not such graph as defined in the equality part of this theorem. Then
there exist at least one vertex v; € Az(v;) such that d(vi, vj) > 3. Let As(v;) be partitioned into
two sets Az1(Vi) and Agx(Vi), where
As1(vi) ={V; | v; is not adjacent to v;, not on the eccentric path P(v;) of v; and d(v;, v;) = 2}
Agz(vi) ={V; | vj is not adjacent to v;, not on the eccentric path P(v) of v; and d(vi, v;) > 3}.
Let |As2(vi)| =1 = 1. So, |Asi(vi)| = n— & — deg(vi) - .

Therefore %o)l(vi V) = @ , %‘zo:(vi ;) = deg(v,) -1,

> dv,v,)=2(n—g —deg(v,) 1) and > d(v,v,)>3.
viehy (V) Vieh; (V)
Therefore
d(Vi |G)=Zd(vi’vj)
j=1

= Yod(v,v)+ Dldv,v)+ Dd(v,v)+ D d(v,v,)

vieA (V) vieA(v;) Viehy (V) VieAn (V)
z@m@g(w)—u 2(n—e —deg(v)—1)+3
- 2n—deg(vi)—1+@+l |

Therefore

W(G) =2 > d(v, |6)

z%i[Zn—deg(vi)—u@H}

=%{2n2 —2m—n+i@+m}

i=1



Wiener index of graphs in terms of eccentricities 243

> %{n(Zn -1)-2m+ Z—q (QZ_ 3)} as| > 1, which isacontradiction.

i=1

This contradiction proves the result. M

Corollary 2.2: Let G be a self-centered graph with n vertices, m edges and radius r = r(G),
then W(G) > %[n(Zn -1 -2m+ W} :

Equality holdsif and only if for every vertex v; of a self-centered graph G, if P(v) is
one of the eccentric path of v then for every v; € V(G) which is not on the eccentric path
P(v), d(vi, vj) < 2.

Proof: For self-centered graph each vertex has same eccentricity equal to the radius r, that
is,e=¢V)=r,i=12,...,n Therefore from Eqg. (1)

W(G) > %{n(Zn—l) —2m+ zr(f_f)}

= 1{n(Zn—l) - 2m+m}
2 2

The proof of the equality part is similar to the proof of equality part of Theorem 1.1. 0

Theorem 2.3: Let G be a connected graph with n verticesand e = e(v;),1 =1, 2, ..., n, then

(e +1)(e —2)] @

1| >
W(G)zg{n +izzl: 5

Equality holds if and only if for every vertex v; of G, if P(v) is one of the eccentric
path of vi, then for every v; € V(G) whichis not on P(v;), d(v, v;) = 1.

Proof: Lete=¢(Vv),i =1, 2, ..., nand P(v;) be one of the eccentric path of v; € V(G).
Let  Ba(vi) ={v; |V ison eccentric path P(v) of v},
Ba(vi) ={Vv; | vj is not on the eccentric path P(v;) of vi}.
Clearly  Bi(v)) uBy(v) =V(G) and
Bi(v)l[=e+1, [BxAv)]=n-e&-1
Now > d(v,v,)=1+2+--+e :@,
vieB;(v)

> d(v.v,) 21 -,

Therefore
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d(v, 16) = Y d(v,,v,)
Dod(v, v+ Dld(v,v))

VJGB].(V|) V|€BZ(V|)

ZMJrn—e -1

., (e-2@E+)

2
Therefore
W(G) :%iz::d(vi 1G)
Z%Z{m (ei—2)§e. +1)}
Al 3 E-2e)
For equality, N

Let G be a graph and P(v;) be one of the eccentric paths of v; eV(G). Let B;(v;) and
B2(Vv;) be the sets as defined in the first part of the proof of this theorem.
Let d(vi, vj) =1, where v; € Bx(v).

Therefore > d(v,,v;)=n-e -land > d(v,v,) _&aE&+) +1)
VjeB, (V) vieB;(v) 2
Therefore
d(Vi |G)=Zd(vi’vj)
j=1
>od(v,v)+ Dld(v,v;)
vjeBy(v;) vjeB, (Vi)
_&(s +1)+n—e|—1
I CErICES)
2
Therefore

W(G) =2 > d(v |6)

=§i[n+ (e-2)e +1)}

i=1
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zg[nz S CIRIC +1)]
2 o 2
Conversdly,

Suppose G is not such graph as defined in the equality part of this theorem. Then
there exist at least one vertex v, € By(vi) such that d(v;, vj) > 2. Let Bx(v) be partitioned into
two sets By (Vi) and Byy(Vi), where

Bo1(vi) ={V; | v; is not on the eccentric path P(v;) of vi and d(v;, v;) = 1}
Boo(vi) ={Vv; | v is not on the eccentric path P(v;) of vi and d(vi, vj) > 2}.
Let [Bo(vi)|=1>1
Therefore Bu(vi)|=n—-e - 1-1.

Therefore > d(v;,v;) = e,(q2+1), > dv,v,)=n-e-1-land > d(v,v,)>2.

vieB;(vi) VjeBy () Vi eBy (Vi)
Therefore
d(Vi |G) = zd(Vi 1Vj)
j=1
= Ydv,v)+ D dv,v)+ D.dv,v))
vjeB(v;) vjeBy (V) Vi€By (Vi)
2w+n—eI -1-1+2
B e (2
2
Therefore
1 n
W(G)=3 > d(v |G)
i=1
Zgz[m, NCRIC +1)}
= 2
212 n+1+w asl>1.
2+ 2
1 (e —-2)(e +)
==|n(n+1 —_ .
S
Thisis a contradiction. Hence the proof. 0

If Gisasef-centered graphthen g = e(v)) =r(G) foral i =1, 2, ..., n. Substituting
thisin EqQ. (2) we get following corollary.
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Corollary 2.4: Let G be a self-centered graph with n vertices and radius r = r(G), then

W(G) >1[n2 . n(r +1)(r —2)}
23 |

Equality holdsif and only if for every vertex v; of a self-centered graph G, if P(v) is
one of the eccentric path of v then for every v; € V(G) which is not on the eccentric path
P(v), d(vi, vj) = 1.

Theorem 2.5: Let G be a connected graph with n vertices, m edges and diam(G) = d. Let
=e(v),i=12,...,n,then

W(G) < %[n(nd _1)—(1-d)2m+ ZM} 3)

Equality holdsif and only if diam(G) < 2.

Proof: Let P(v;) be one of the eccentric path of v; € V(G).
Let  Au(vi) ={V; | v ison the eccentric path P(v) of vi},
Ax(vi) ={Vv; | vj isadjacent to v; and which is not on the eccentric path P(v) of vi},
Ag(vi) ={Vv; | v; isnot adjacent to v; and not on the eccentric path P(v;) of vi}.
Clearly  Ag(vi) U Ag(vi) U Ag(v)) =V(G)  and
A(v)l=e+1,  |A(vi)[=deg(vi) -1,  |As(vi)|=n— & —deg(w).

Now Zd(vi,vj)=1+2+...+qZQ(Q +1),
vieA (V) 2
> d(v;,v;) = deg(v,) -1,
VieA (Vi)
>d(v,,v;) <d(n—g —deg(v,)) -
Vle%(vl)
Therefore

d(v, 16) = Y d(v,v,)

= Yd(v,v)+ ddv,v)+ Dld(v,v))

vieA(v) vieh(v) vieh(v)

S@m@,(w)_m(n-q ~ deg())

—nd—1+(1- d)deg(vi)+w.

Therefore
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W(G) =2 > d(v |6)

_;Z{nd 1+ (1— d)deg(v,) + M}
%{n(nd 1)+ (1- d)2m+zw} since
deg(v) 2m.
For equality, B
Let diam(G) < 2.

Case l: If dlam(G) = 1 then G = K,.. Therefore As(v)) =d ande =e(v))=1,i=1,2,...,n

Therefore W(G) = [n(n 1) + Zl(1+21_ 2)} - n(n2— Y .
i=1

Case 2: If diam(G) = 2, then for v; € Ag(v), d(vi, vj) = 2.

Therefore ) d(v,,v;) =2(n—¢ —deg(v,)).
v A W)

HenceW(G)——[n(nd 1)+ (1-d)2m+ ZM}

i=1

{n(zn 1)- 2m+ZQ(q2 3)}
Conversdly,
d(v, 16)= 3 d(v.v))
J_lZd(vi,vj)Jr Sdv,v)+ Sdv.v) (4

vieA (V) vieA(v) vieh(v)

The first summation of Eq. (4) contains the distance between v; and the vertices on
its eccentric path P(v;). Second summation of Eq. (4) contains the distance between v; and
its neighbor which are not on the eccentric path P(v;). The third summation of Eq. (4)
contains the distance between v; and a vertex which is neither adjacent to vi nor on the
eccentric path P(v;). Hence the equality in EqQ. (4) holds if and only if d = diam(G) < 2. Itis
truefor al vi € V(G). Hence diam(G) < 2. 0

Corollary 2.6: Let G be a self-centered graph with n vertices and radiusr = r(G), then
—1)(nr + 4m)}
> :

W(G) < %[n(nr _py [
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Equality holds if and only if diam(G) < 2.

Proof: Proof follows by substitutinge =e(vi) =r,i=1,2, ..., nin Eq. (3). O

REFERENCES

1. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc.,
69 (1947), 17 — 20.

2. F. Buckley, F. Harary, Distancesin Graphs, Addison-Wesley, Redwood, 1990.

3. I.Gutman, Y.N.Yeh, S. L. Leg, Y. L. Luo, Some recent resultsin the Theory of the
Wiener number, Indian J. Chem., 32A (1993), 651 — 661.

4. R. C. Entringer, Distance in graphs. Trees, J. Combin. Math. Combin. Comput., 24
(1997), 65 — 84.

5. A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees. Theory and
Applications, Acta Appl. Math., 66 (2001), 211 — 249.

6. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener index of hexagonal systems,
Acta Appl. Math., 72(2002), 247 — 294.

7. 1. Gutman, G. Zenkevich, Wiener index and vibrational energy, Z. Naturforch,
57A(2002), 824 — 828.

8. H. B. Wadlikar, H. S. Ramane, V. S. Shigehalli, Wiener number of Dendrimers, In:
Proc. National Conf. on Mathematical and Computational Models, (Eds. R.
Nadargjan and G. Arulmozhi), Allied Publishers, New Delhi, 2003, pp. 361 — 368.

9. H.B. Wadlikar, V. S. Shigehdlli, H. S. Ramane, Bounds on the Wiener number of a
graph, MATCH Comm. Math. Comp. Chem., 50 (2004), 117 — 132.

10. G. C. Garcia, I. L. Ruiz, M. A. Gomez-Nieto, J. A. Doncel, A. G. Plaza, From
Wiener index to molecule, J. Chem. Inf. Modél ., 45 (2005), 231 — 238.

11.H. Liu, X. F. Pan, On the Wiener index of trees with fixed diameter, MATCH
Commun. Math. Comput. Chem., 60 (2008), 85 — 94.

12. S. Wang, X. Guo, Trees with extrema Wiener indices, MATCH Commun. Math.
Comput. Chem., 60 (2008), 609 — 622.

13. A. Chon, F. Zhang, Wiener index and perfect matching in random phenylene chains,
MATCH Commun. Math. Comput. Chem., 61 (2009), 623 — 630.

14. K. C. Das, I. Gutman, Estimating the Wiener index by means of number of vertices
of edges and diameter, MATCH Commun. Math. Comput. Chem., 64 (2010), 647 —
660.



