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ABSTRACT 

In this paper, we first collect the earlier results about some graph operations and then we 

present applications of these results in working with chemical graphs. 
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1. INTRODUCTION 

Throughout this paper all graphs considered are finite, simple and connected. The distance 

dG(u,v) between the vertices u and v of a graph G is equal to the length of a shortest path 

that connects u and v. Suppose G is a graph with vertex and edge sets V = V(G) and E = 

E(G), respectively. For an edge e = ab of G, let na(e) be the number of vertices closer to a 

than to b. In other words, e)(nG
a = |{uV(G) | d(u, a) < d(u, b)}|. In addition, let n0(e) be 

the number of vertices with equal distances to a and b, i.e., e)(nG
0 = |{uV(G) | d(u, a) = 

d(u, b)}|. We also denote the number of edges of G whose distance to the vertex a is 

smaller than the distance to the vertex b by ma(e). The Szeged, edge Szeged, revised 

Szeged, vertex–edge Szeged, vertex Padmakar–Ivan and edge Padmakar–Ivan indices of 

the graph G are defined as: 

Szv(G) = e=uvE(G) nu(e)nv(e)  (see[1]), 

Sze(G) = e=uvE(G) mu(e)mv(e)  (see[2]), 

*
vSz (G) = e=uvE(G) (nu(e)+

2

(e)n0 )(nv(e)+
2

(e)n0 )  (see[3]), 
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Szev(G) = 
2
1 e=uvE(G) (mu(e)nv(e)+ mv(e)nu(e))    (see[4]), 

PIv(G) = e=uvE(G) (nu(e)+nv(e))  (see[5]), 

PIe(G) = e=uvE(G) (mu(e)+mv(e))  (see[6]). 

 

A graph G with a specified vertex subset U V(G) is denoted by G(U). Suppose G 

and H are graphs and U  V(G). The generalized hierarchical product, denoted by G(U)H, 

is the graph with vertex set V(G) V(H) and two vertices (g, h) and (g′, h′) are adjacent if 

and only if g = g′ U and hh′  E(H) or, gg′  E(G) and h = h′. This graph operation has 

been introduced by Barriére et al. [7,8] and it has some applications in computer science. 

To generalize this graph operation to n graphs, assume that Gi = (Vi , Ei) is a graph with 

vertex set Vi , 1 ≤ i ≤ N, having a distinguished or root vertex 0. The hierarchical product H 

= GN …G2G1 is the graph with vertices the Ntuples xN … x3x2x1, xi  Vi , and edges 

defined by the following adjacencies: 

xN…x3x2x1






















0.1Nx2x1x)NE(GNyNx1x2x3xNy

0,2x1x)3E(G3y3x1x2x3yNx

0,1x)2E(G2y2x1x2y3xNx

),1E(G1y1x1y2x3xNx

...andif...

:::

andif...

andif...

if...

 

 

We encourage the reader to consult [9] for the mathematical properties of the hierarchical 

product of graphs. 

 

The Cartesian product GH of the graphs G and H has the vertex set V(GH) = 

V(G)  V(H) and (a, x)(b, y) is an edge of GH if a = b and xy  E(H), or ab  E(G) and x 

= y, see[10]. 

 

The disjunction GH of graphs G and H is the graph with vertex set V(G)×V(H) 

such that (u1, v1) is adjacent to (u2, v2) whenever u1u2E(G) or v1v2E(H) [10]. 

 

Let G=(V, E) be a simple graph of order n=|V|. Given u, v  V, u  v means that u 

and v are adjacent vertices. Given a set of vertices S={v1, v2, …, vk} of a connected graph G, 

the metric representation of a vertex v  V with respect to S is the vector r(v|S)=(dG(v, v1), 

dG(v, v2), …, dG(v, vk)). We say that S is a resolving set for G if for every pair of distinct 

vertices u, v  V, r(u|S)  r(v|S). The metric dimension of G is the minimum cardinality of 

any resolving set for G, and it is denoted by dim(G). 
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Now, we present some certain types of graphs that play prominent roles in this 

work. A graph G is called nontrivial if |V (G)| > 1. The n-cube Qn (n ≥ 1) is the graph 

whose vertex set is the set of all n-tuples of 0s and 1s, where two n-tuples are adjacent if 

they differ in precisely one coordinate. A tree is an undirected graph in which any two 

vertices are connected by exactly one simple path. In other words, any connected graph 

without cycles is a tree. A regular graph is a graph where each vertex has the same number 

of neighbors. A regular graph with vertices of degree k is called a k–regular graph or 

regular graph of degree k. Note that the path graph, the complete and the cycle of order n 

are denoted by Pn, Kn and Cn, respectively. 

 

2. MAIN RESULTS 

 In what follows, we assume that 
j

i if =1 and 
j

i if =0 for each i ,j  {0, 1, 2, …}, that i 

– j = 1. Furthermore, let 
j

i if =
j

i if = 0, for every i, j  {0, 1, 2, …}, such that i − j > 

1. For a rooted graph G with root vertex r v(G) to denote the sum of e)(nG
v  

over all edges e = uv of G that dG(u, r) < dG(v, r) and  GΓ c
v to denote the sum of e)(nG

u  

over all edges e = uv of G that dG(u, r) < dG(v, r). Moreover, e(G)  denotes the sum of 

e)(mG
v  over all edges e = uv of G that dG(u, r) < dG(v, r) and  GΓc

e  denotes the sum of 

e)(mG
u  over all edges e = uv of G that dG(u, r) < dG(v, r). In other words,  

                             v(G) =        rv,dru,d,GEuv
G
v

GG

uv)(n , 

                            GΓ c
v  =        rv,dru,d,GEuv

G
u

GG

uv)(n ,  

                             e(G) =        rv,dru,d,GEuv
G
v

GG

uv)(m , 

                            GΓc
e  =        rv,dru,d,GEuv

G
u

GG

uv)(m .  

 If the vertex r lies on no odd cycle of G, then one can easily seen that  

                           PIv(G) =  GΓv +  GΓ c
v      and       PIe(G) =  GΓe +  GΓc

e .   

 Also, for a sequence of graphs, G1, G2, …, Gn, we set |Vi,j| =  

j

ik k |)V(G|  and 

 


j

lki,k k
l
ji, |)V(G||V| . To say the next result, we have to present some notation. For a 

connected rooted graph G with root vertex r, let N
G
(r) be the set of vertices of G with the 

property that uN
G
(r) if there exists v  u in V(G) such that dG(u, r)=dG(v, r). We say that 

http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Path_(graph_theory)
http://en.wikipedia.org/wiki/Connectedness
http://en.wikipedia.org/wiki/Cycle_(graph_theory)
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S(N
G
(r))V(G) is a resolving set for NG(r) if for each pair of distinct vertices u, vN

G
(r), 

r(u|S(N
G
(r)))  r(v|S(N

G
(r))). Therefore, it is clear that dim(N

G
(r))  dim(G). The metric 

dimension of N
G
(r) is the minimum cardinality of any resolving set for N

G
(r), and it is 

denoted by dim(N
G
(r)). 

 

Theorem 1. [9]. Suppose G1, G2, …, Gn are nontrivial connected rooted graphs with root 

vertices r1, …, rn, respectively. Then 

dim(Gn …G2G1)= 

























n1

n

3j

2
ΠGG

j

n1

n

2j

1
G

j

PG))(rdim(N)V(G|

PG))(rdim(N)V(G|

1`2

1`

if

if

.
 

 

 

Figure 1: Irregular Dicentric )(2,1,3,1,25,IDD
 
Dendrimer. 

 

Example 2.  Let )p,,(pr, r1
IDD  be the graph of the irregular dicentric dendrimer that pi>1, 

i=1,.., r, see [11] for more information. Then )p,,(pr, r1
IDD  = P2 H, where H is a tree of 

progressive degrees pi, i=1,…,r, respectively, and generation r (see Figure 1). One can see 

that dim(N
H
(r)) =  1pp r

1-r

1i

i 


. Therefore, by Theorem 1, we have: 

)dim(IDD )p,,(pr, r1 
=|V(P2)| dim(N

H
(r)) =2  1pp r

1-r

1i

i 


. 

 

A graph G is said to be (vertex) distance-balanced, if e)(nG
a = e)(nG

b , for each edge 

e = ab  E(G), see [12, 13] for details. These graphs first studied by Handa [14] who 

considered distance-balanced partial cubes. In [15], Jerebic et al. studied distance-balanced 
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graphs in the framework of various kinds of graph products. After that, in [16], the present 

authors introduced the concept of edge distance-balanced graphs. Such a graph G has this 

property that e)(mG
a  =

 
e)(mG

b  holds for each edge e = ab  E(G). 

 

 
Figure 2: The Graph G'. 

 

Proposition 3. [13]. Let G and H be arbitrary, nontrivial and connected graphs. Then GH 

is distance-balanced if and only if G and H are regular graphs.  

 

Example 4. Consider G', see Figure 2, that was constructed in [17] as an example of a 

bipartite regular graph that is not distance-balanced. It would be interesting to know that we 

can produce a distance-balanced graph by two graphs which are not distance-balanced.  Let 

G is arbitrary, nontrivial and connected regular graph then by the above proposition, G'  G 

is distance-balanced (note that G can be not distance-balanced).  

 

Theorem 5. [16]. Let G and H be edge and vertex distancebalanced graphs. Then GH is 

edge distance-balanced graphs. 

                                      

Example 6. Consider the N-cube QN. It is well-known fact that it can be written in the form 

QN = 2
N

1i K . On the other hand, K2 is edge and vertex distance-balanced graph. So, by 

the above theorem, QN  is edge distance-balanced graph.      

 

Theorem 7. [18]. Suppose G1, G2, …, Gn are connected rooted graphs with root vertices r1, 

…, rn, respectively. Then   

                Szv(Gn …G2G1) =




n

1i

iv
2

1i1,n1,i )(GSz|V||V|
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                                                + )(GΓ|V|V|1)|)V(G(| iv
i
n1,

1n

1i

n

1ij

|1j1,j 


 

 












 . 

 

Corollary 8. [18]. Suppose G1, G2, …, Gn are connected, rooted and distance-balanced 

graphs with root vertices r1, …, rn, respectively, such that ri lies on no odd cycle of Gi, i = 

1, 2, . . . , n. Then   

                Szv(Gn…G2G1) =




n

1i

iv
2

1i1,n1,i )(GSz|V||V|
 

                                                + )(GPI|V|V|1)|)V(G(| iv
i
n1,

1n

1i

n

1ij

|1j1,j 


 

 














2

1
. 

 

Theorem 9. [18]. Suppose G1, G2, …, Gn are connected rooted graphs with root vertices r1, 

…, rn, respectively. Then   

     Sze(Gn  …  G2  G1)  = 




n

1i

n1,i |V| Sze(Gi) 

                                          + 

2
n

1i

1i1,j

1i

1j

jn1,i |V||)E(G||V| 








 












Szv(Gi) 

                                             + 2 








 











n

1i

1i1,j

1i

1j

jn1,i |V||)E(G||V| Szev(Gi) 

                                             +  






 














n

1i

1i

1j

1i1,jjivien1,i |V||)E(G|)G(Γ)G(Γ|V|  

                                         +   






 














n

1ij

1j

1k

j1j1,kkj |)E(G||V|)E(G1|)V(G| .          

 

Corollary 10. [18]. Suppose G1, G2, …, Gn are connected, rooted, distance-balanced  and 

edge distance-balanced graphs with root vertices r1, r2, …, rn, respectively, such that ri lies 

on no odd cycle of Gi, i = 1, 2, …, n. Then 

Sze(Gn  …  G2  G1)  = 




n

1i

n1,i |V| Sze(Gi) 
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                                         + 

2
n

1i

1i1,j

1i

1j

jn1,i |V||)E(G||V| 








 












Szv(Gi) 

                                            + 2 








 











n

1i

1i1,j

1i

1j

jn1,i |V||)E(G||V| Szev(Gi) 

                                            +  






 














n

1i

1i

1j

1i1,jjivien1,i2
1 |V||)E(G|)G(PI)G(PI|V|  

                                              






 














n

1ij

1j

1k

j1j1,kkj |)E(G||V||)E(G|1|)V(G| . 

 

Theorem 11. [18]. Suppose G1, G2, …, Gn  are connected rooted graphs with root vertices 

r1, r2, …, rn, respectively. Then 

  
*
vSz (Gn  …  G2  G1)  = 





n

1i

n1,i
2

1i1, |V||V|  *
vSz (Gi)  

                                         +   
 

 














n

1i

n

1ij

1j1,j2

|V|
|V|1|)V(G|

i
n1, |V(Gi)||E(Gi)| 

                                         +   
 

 














n

1i

r

2
n

1ij

1j1,j4

|V|

i

n1,i N|V|1|)V(G|  

                                         +    )G(Γ)G(Γ|V|1|)V(G| i
c
viv

n

1i

n

1ij

1j1,j2

|V| i
n1, 














 

 

  

where 
ir

N = |{uv  E(Gi) | 
iGd (u, ri) = 

iGd (v, ri)}|. 

 

Corollary 12. [18]. Suppose G1, G2, …, Gn are connected, rooted, bipartite and distance-

balanced graphs with root vertices r1, r2, …, rn, respectively. Then 

*
vSz (Gn  …  G2  G1) = 





n

1i

n1,i
2

1i1, |V||V|  *
vSz (Gi)  

                                         +    iv

n

1i

n

1ij

1j1,j2

|V|
GPI|V|1|)V(G|

i
n1, 

 

 












 .   
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Figure 3: The Molecular Graph of Octanitrocubane. 

 

 

 
Figure 4: The BridgeCycle Graph. 

 

Example 13. Octanitrocubane is the most powerful chemical explosive with formula 

C8(NO2)8, Figure 3. Let H be the molecular graph of this molecule. Then obviously H= 

Q3P2. On the other hand, one can easily see that Szv(Q3)= Sze(Q3)= 

Szev(Q3)=Sz
*
(Q3)=192, v(P2) = 1 and e(P2) = 0 and so, by the above results, we have:  

Szv(H) = Szv(Q3P2)=888, Sze(H) = Sze(Q3P2)=768, Szev(H) = Szv(Q3P2)=888. 

 

Example 14. Let  d 1iiG   be a set of finite pairwise disjoint graphs with viV(Gi). The 

bridgecycle graph BC(G1, G2, …, Gd) = BC(G1, G2, …, Gd; v1, v2, …, vd) of  d 1iiG   with 

respect to the vertices  d 1iiv   is the graph obtained from the graphs G1, …, Gd by 

connecting the vertices vi and vi+1 by an edge for all i = 1, 2, …, d –1 and connecting the 

vertices v1 and vd by an edge, see Figure 4. Suppose that G1 =  … = Gd = G. Then we have 

BC(G1, G2, … , Gd)  Cd  G. On the other hand, It is not so difficult to check that 

Szv(Cn)=

















n|2
4

1)(nn

n|2
4

n

2

3

. Therefore, if 2 | n, by Theorem 1, we have Szv(CnG) = n 
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Szv(G) + 
4

n3

|V(G)|
2
 + n(n –1)|V(G)|v(G) and if 2 |  n, then Szv(CnG) = n Szv(G) + 

4

1)n(n 2
|V(G)|

2
 + n(n –1)|V(G)|v(G). 

 

By replacing G with Pm (such that r is a pendant vertex of Pm) in the above 

relations, we obtain Szv of Sunn, m–1, see [19], as follow: 

 Szv(Sunn ,m–1)=












n|2
6

1

3

1

2

1

4

3

4

1

n|2
6

1

2

1

3

1

2

1

2

1

4

1

nmnmmnnmmnmn

nmnmnmmnmnmn

33222223

23223223

. 
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