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ABSTRACT 

In this paper, we introduce the new class of implicit L-stable generalized hybrid methods for 

the numerical solution of first order initial value problems. We generalize the hybrid methods 

with utilize ynv directly in the right hand side of classical hybrid methods. The numerical 

experimentation showed that our method is considerably more efficient compared to well 

known methods used for the numerical solution of stiff first order initial value problems. 
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1. INTRODUCTION 

Consider the initial value problem for a single first order ordinary differential equation 

)1()(),,('  ayyxfy  

Initial value problems occur frequently in applications. Numerical solution of these 

problems is a central task in all simulation environments for mechanical, electrical, 

chemical systems. There are special purpose simulation programs for application in these 

fields, which often require from their users a deep understanding of the basic properties of 

the underlying numerical methods [2, 11–13].  

From discussion in some papers and books on the relative merits of linear multistep 

and Runge-Kutta methods, it emerged that the former class of methods, though generally 

the more efficient in terms of accuracy and weak stability properties for a given number of 

functions evaluations per step, suffered the disadvantage of requiring additional starting 

values and special procedures for changing steplength. These difficulties would be reduced, 

without sacrifice, if we could lower the stepnumber of the linear multistep methods without 
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reducing their order. The difficulty here lies in satisfying the essential condition of zero-

stability. This zero-stability barrier was circumvented by the introduction, in 1964-5, of 

modified linear multistep formula which incorporates a function evaluation at on off-step 

point. Such formula, simultaneously proposed by Gragg and Stetter [6], Butcher [1], and 

Gear [4,5] were christened hybrid by the last author an apt name since, whilst retaining 

certain linear multistep characteristics, hybrid methods share with Runge-Kutta methods 

the property of utilizing data at points other than the step points. Thus, we may regard the 

introduction of hybrid formulae as an important step into the no man’s land described by 

Kopal.  

 

  The k-step classical hybrid methods [3,7–9,11,17] are as 

 
 

 
k

j

k

j

njnjjnj fhfhy
0 0

,                                             (2) 

where 1k , 0  and 0  are not both zero,  k,...,1,0 , and also ),(    nnn yxff . 

These methods are similar to linear multistep methods in predictor-corrector mode, but with 

one essential modification: an additional predictor is introduced at an off-step point. This 

means that the final (corrector) stage has an additional derivative approximation to work 

from. This greater generality allows the consequences of the Dahlquist barrier to be avoided 

and it is actually possible to obtain convergent k -step methods with order 12 k  up 

to 7k . Even higher orders are available if two or more off-step points are used. The three 

independent discoveries of this approach were reported in [2–5, 11]. Although a flurry of 

activity by other authors followed, these methods have never been developed to the extent 

that they have been implemented in general purpose software. Recall that the formula (2) is 

zero-stable if no root of the polynomial 



k

j

j

j

0

)(  has modulus greater than one and if 

every root with modulus one is simple. Thus Gragg and Stetter’s results showed that [6], 

with certain exceptions. We can utilize both of new parameters v  and v  to raise the order 

of (2) to two above attained by linear multistep methods having the same right-hand side 

and the same value for k. Shokri et al in [13, 14], introduce a class of methods which 

include off-step points and high order derivatives of f  for the numerical solution of first and 

second order initial value problems. In this paper, by utilizing parameter v in term ynv , 

directly in the right hand side of (2), and not high order derivatives of f , we prove that 

zero-stability property is hold.  

 

2. GENERALIZED HYBRID METHODS 

For the numerical integration of (1), we consider the generalized hybrid methods of the 

form 
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where ja , jb , jc , jd , kj 0  such that   kj ,...,2,1,0 , ,...,2,1j  are 

)132(  k arbitrary parameters. Formula (3) can only be used if we know the values of 

the solution )(xy  and )(' xy  at k  successive points. These k values will be assumed to be 

given. Further, if 00 c , this equation is referred to as an explicit or predictor formula since 

1ny  occurs only on the left hand side of method (3). In other words the unknown 1ny  can 

be calculated directly and also if 00 c , this equation is referred to as an implicit or 

corrector formula since 1ny  occurs in both sides of the equation. In other words the 

unknown 1ny  cannot be calculated directly since it is contained within 1' ny . Now with the 

difference equation (3), we can associate the difference operator L  defined next. 

 

Definition 2.1. Let the differential equation (1) have a unique solution )(xy  on  ba,  and 

suppose that ],[)( )1( baCxy p  for 1p . Then the deference operator L for method (3) can 

be written as 
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Definition 2.2. For the method (3), we define the functions )(  and )(  as 

,)(,)(
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                             (5) 

so we called the first and second characteristic functions, respectively. 

 

We can assume that the functions )(  and )(  have no common factors. In 

order for the difference equation (3) to be useful for numerical integration, it is necessary 

that it be satisfied to high accuracy by the solution of the differential equation ),(' yxfy  , 

when h  is small for an arbitrary function ),( yxf . This imposes restrictions on the 

coefficients ja  and jb . We assume that the function )(xy  has continuous derivatives at 

least of order 5. 

We firstly use the Taylor series expansion to determine all the coefficients of (3), 

which can be written as 

,)()()(]),([ )2(2

2

)1(

10  nnn xyhCxhyCxyChxyL                (6) 
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and ,...2,1,0q . 

 

Definition 2. 3. The generalized hybrid method (3) are said to be of order p if, C0  C1  

 Cp  0 and Cp1  0 thus for any function y(x)C
 (p+2)

 and for some nonzero constant Cp1 

 0, we have 

  
),()(]),([ 2)1(1

1



  p

n

pp

p hOxyhChxyL                                   (7) 

Where Cp1  so called the error constant. 

In particular, ]),([ hxyL  vanishes identically when y(x) is polynomial whose degree is less 

than or equal to p . 

 

Lemma 2. 1. The generalized hybrid method (3) is consistent if and only if 

,)1()1(',0)1(
1





k

j

jd                                      (8) 

Proof. We know that the linear multistep method is said to be consistent if it has 

order 1p  or at least C0  C1 0. Now by a simple calculation, we get (8).                         □ 

 

Definition 2. 4. The generalized hybrid method (3) is said to be consistent if it has 

order 1p . 

 

2.1 One-step L-stable generalized hybrid methods with one off-step point 

Upon choosing 1k in (3), we get 

111101111 11
)(    nnnnnn fhdfcfchybyay                              (9) 

where 1a , 0b , 1b , 0c , 1c and 10 1  are 6 arbitrary parameters. Now if we consider 1 is 

free parameter, then by solving for the coefficients, we have 
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so its local truncation error is 

  
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Theorem 2. 1. Any methods derived from (9), under conditions of Lemma 2.1, are zero-

stable. 

 

Proof.  For this propose, we show that the function 11

11)(
 

 ba has no roots other 

than 11  x1. Let   11  then obviously 10  , and with conditions of Lemma 2.1, 

we can write the first characteristic function )(x  as  xaaxx )1()( 11  . Then 

11  is a principal root of )(x . If we suppose that  has a root 1 then '  must have a 

root   such that  1 . Therefore 

,1010)(' 1
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1 bbb      

now since 1 , 11 b  hence 1
1

1


b

  and this is a contradiction. Now suppose that   

has a root 10  . Hence '  must have a root   such that 10   . Therefore 

.00)( 1111 abba                            (12) 

But 0)('  , then 

                                                 ,1

1 b                                                               (13) 

it follows from (12) that 

                                           ).( 11 ab                                                          (14)  
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Therefore from (13) and (14) we have )( 1

1 a   . Now since 1,0   , 

1)( 1  a  therefore 11  a , this means that 11 a and this is a contradiction, 

since 1a  is positive. Similarly we can show that  cannot has any negative root and this 

completes the proof.                                                                                                              □ 

 

Theorem 2. 2. Any methods derived from (9), under conditions of Lemma 2.1. and 

Theorem 2.1, are convergent. 

 

Proof.  As we known, the necessary and sufficient conditions for linear multistep methods 

to be convergent are that they must be consistent and zero-stable. Then by according to the 

Lemma 2.1 and Theorem 2.1, any methods derived from (9) are convergent.                      □ 

 

Theorem 2. 3. The generalized hybrid method (9) with the coefficients given in (10) is A-

stable if )1,3057.0( . 

 

Proof. Applying (9) to the scalar test equation yy ' , one gets its characteristic equation 

                                                     ,
)(

)(






B

A
                                                          (15) 

where hh   and 

,)( 11 hcahA   

.
2

1

6

1

2

1
)(1)( 2

11

3

11

3

11

2

11

2

10111 
















  dbhdbhdcbhbhB  

Since the necessary and sufficient condition for A-stability is 1 , therefore by 

substituting of coefficients in )(hA  and )(hB , we have 
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Now by a simple calculation we know that 1  if and only if )1,3057.0( .                 □ 

 

Theorem 2. 4. For every )1,3057.0( , the generalized hybrid method (9) is L-stable. 

 

Proof. Using the previous theorem, the method (9) is A-stable. Furthermore, Applying (9) 

to the scalar test equation, one gets its characteristic equation 

                                                       .)(1 nn yhCy                                                (17) 
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 Now it is easy to see from (16) that method (9) is L-stable. In fact, we have 0|)(| hC as 

)Re( h .                                                                                                                       □ 
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which is the implicit one-step L-stable generalized hybrid method of order 4 and its local 

truncation error is )(
480

1 )5(5 yhE  . 
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Hence we have 
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which is the implicit one-step L-stable generalized hybrid method of order 4 moreover its 

local truncation error is )(
330

1 )5(5 yhE   and the figures of )(hC  are shown in Figure 2.1 

and Fig 2.2. In the numerical experiment for (21), one obtains one more unknowns, 
3

1
n

y , 

to be solved beside yn1. For this propose, Gear [4] has used the differentiation formula 

given by 

,1 nnn hfyy   
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Figure.2.1. C( h ) with  = 
3

1
. 

 

Figure.2.2. C( h ) with  = 
2

1
. 

 

3. NUMERICAL RESULTS  

In this section, we present some numerical results obtained by our new generalized hybrid 

methods and compare them with those from other multistep methods. 

 

Example 3.1. Consider the stiff initial value problem 
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With the exact solution )2exp(1 ty   and )exp(2 ty  . This equation has been solved 

numerically for 50T  using exact starting values and the Wu’s method. In the numerical 

experiment, we take the step lengths 05.0h . In Table 3.1, we present the absolute errors 

at the end-point. 

 

Table 3. 1. Comparison of the absolute errors in the approximations obtained using the new 

class of methods, for instance (21), and the sixth-order method of Wu et al. [16] for 

Example 3.1. 
 

T  h  Y  Error of (21) Error of Wu’s Method in [16] 

50 0.05 
1y  6.125e-17 1.97e-15 

2y  8.968e-13 2.02e-11 

 

Example 3. 2. Consider the stiff problem 
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With the exact solution 
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This equation has been solved numerically for T  20 and T  100 using exact starting 

values and the Wu’s method. In the numerical experiment, we take the step lengths  h  

0.005 and h  0.1. In Table 3.2, we present the absolute errors at the end-point. 
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Table 3.2. Comparison of the absolute errors in the approximations obtained using the new 

class of methods, for instance (21), and the sixth-order method of Wu et al. [16] for 

Example 3.2. 

 

T  h  Y  Error of (21) Error of Wu’s Method in [16] 

50 0.005 
1y  3.25e-21 1.38e-20 

2y  3.25e-21 1.38e-20 

3y  3.25e-21 1.38e-20 

100 0.1 
1y  4.65e-32 3.57e-31 

2y  4.65e-32 3.57e-31 

3y  4.65e-32 3.57e-31 

 

Example 3. 3. Consider the stiff problem 
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With the exact solution 
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This equation has been solved numerically for 1.0T  and 18.0T  using exact 

starting values and the Wu’s method. In the numerical experiment, we take the step lengths 

h 0.001 and h  0.01. In Table 3.3, we present the absolute errors at the end-point. 
 

Table 3. 3. Comparison of the absolute errors in the approximations obtained using the new 

class of methods, for instance (21), and the sixth-order method of Wu et al. [16] for 

Example 3.3. 
 

T  h  Y  Error of (21) Error of Wu’s Method in [16] 

0.1 0.001 

1y  4.61e-13 1.75e-7 

2y  5.78e-13 3.59e-8 

3y  6.35e-13 3.72e-8 

0.18 0.1 

1y  2.89e-11 1.64e-5 

2y  6.31e-12 2.79e-7 

3y  2.18e-12 2.79e-7 
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Example 3.4. The following stiff initial value problem arose from a chemistry problem 

 















,2500

,1000013.0

,25001000013.0

31

'

3

212

'

2

21212

'

1

yyy

yyyy

yyyyyy

 

with initial value Ty )1,1,0()0(  . We solve this problem at 2x  and compare the results 

with those of Ismail methods [10] and SDBDF [7]. In Table 3.4, we present the absolute 

errors at the 2x . 

 

Table 3. 4. Comparison of the absolute errors in the approximations obtained using the new 

class of methods, for instance (21), Ismail methods [10] and SDBDF [7] for Example 3.4. 

 

x  
iy  Exact solution Error of (21) Error of Ismail methods [10] Error of SDBDF [7] 

20 
1y  -3.616933169289e-6 7.6e-19 8.2e-11 3.1e-9 

2y  9.815029948230e-1 2.4e-15 6.1e-6 1.8e-6 

3y  1.018493388244 9.3e-15 5.7e-6 5.7e-6 
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