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ABSTRACT 

Whereas there is an exact linear relation between the Wiener indices of 
kenograms and plerograms of isomeric alkanes, the respective terminal 
Wiener indices exhibit a completely different behavior: Correlation between 
terminal Wiener indices of kenograms and plerograms is absent, but other 
regularities can be envisaged. In this article, we analyze the basic properties of 
terminal Wiener indices of kenograms and plerograms. 
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1. INTRODUCTION 

In his pioneering paper [1], Arthur Cayley conceived the concept of molecular graphs. He 
introduced two types of such graphs, naming them “kenograms” and “plerograms”. (It is 
worth noting that in the 1870s, when Cayley wrote his article [1], the word “graph” was 
still not in use in the mathematical literature.) According to Cayley, if every atom in a 
molecule is represented by a vertex, then we get a “plerogram”. If, as usual, we disregard 
hydrogen atoms, then the respective mathematical representation of a molecule is called 
“kenogram”. As well known, in the later development of chemical graph theory, the 
molecular graphs considered are almost exclusively kenograms, and when saying 
“molecular graph” this fact is usually tacitly understood. In order to avoid any 
misunderstanding, in Fig. 1 is depicted the plerogram and the kenogram of 2,4,4,6-
tetramethylheptane. 
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Fig. 1. The kenogram (Ke) and the plerogram (Pl) of 2,4,4,6-tetramethylheptane. 

 
In [8], a remarkable regularity was discovered. Namely, the Wiener indices of plerograms 
and kenograms of alkanes are mutually linearly related as shown in Fig. 2. 
 
In the case of isomeric alkanes of formula CnH2n+2 , the relation between the two Wiener 
indices reads [8]: 

2( ) 9 ( ) 9 6 1.W Pl W Ke n n= + + +                                                      (1) 
 
Recall that the Wiener index W(G) of a connected graph G is equal to the sum of distances 
between all pairs of vertices of G. More formally, 
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where V (G) is the vertex set of the graph G and dG(u,v) denotes the distance of the vertices 
u and v (= number of edges in a shortest path connecting u and v). Details on the Wiener 
index can be found in the reviews [2, 3, 9, 10, 12]. 
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Fig. 2. The (exact) linear relation between the Wiener indices of plerograms and kenograms 
in the case of isomeric nonanes (n = 9), cf. Eq. (1). 

 
In this paper we are considering the so-called terminal Wiener index, defined as the 

sum of distance between all pairs of pendent vertices of the graph G. (A vertex is said to be 
pendent if its degree is unity, i.e., if it has just a single neighbor.) The motivation for the 
introduction of the terminal Wiener index was a theorem by Zaretskii [13], according to 
which any tree is fully determined by the distances between its pendent vertices. 

The concept of terminal Wiener index was put forward by Petrović and two of the 
present authors [7]. Somewhat later, but independently, Székely, Wang, and Wu arrived at 
the same idea [11]. Let V1(G) ؿ V (G) be the set of pendent vertices of the graph G. Then 
TW is defined in full analogy with the Wiener index, Eq. (2), as 
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For review on terminal Wiener index see [6, 12]. 
According to Eq. (3), if the graph G has no pendent vertex, or just one such vertex, then 
TW(G) = 0. The application of this molecular structure descriptor is purposeful only for 
graphs with many pendent vertices, especially for trees. 
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If T is a tree, then its terminal Wiener index can be calculated by means of the 
formula [7] 

∑=
e

TepTepTTW )()()( 21                                                  (4) 

where p1(e|T) and p2(e|T) are the number of pendent vertices of T, lying on the two sides of 
the edge e. Summation in (4) goes over all edges of the tree T. Recall that if the tree T 
possesses a total of p pendent vertices, then for for any edge e, 

p1(e |T) + p2(e |T) = p. 
The terminal Wiener index may be viewed as a simplified version of the ordinary Wiener 
index. Indeed, in the case of trees and chemical trees, there exists a reasonably good 
correlation between W and TW, as seen from the example shown in Fig. 3. 

 
 
Fig. 3. Correlation between Wiener index (W) and terminal Wiener index (TW) of trees 
of order 8. Correlation coefficient: -0.91. 

At this point we mention that recently it was shown [5] that, in addition to Eq. (1), 
also the terminal Wiener index of a plerogram linearly depends on the Wiener index of the 
kenogram: 
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TW(Pl) = 4W(Ke) + 6n2 + 5n + 1 .                                       (5) 
In view of the linear correlation between W and TW (cf. Fig. 3), and the exact linear 

relations between W(Pl) and W(Ke) as well as between TW(Pl) and W(Ke) (cf. Eqs. (1) and 
(5)), one would expect that also TW(Pl) and TW(Ke) are linearly (or, at least, somehow) 
correlated. Surprisingly, however, this is not the case, as seen from the example shown in 
Fig. 4. 
 

 

Fig. 4. The terminal Wiener indices of the plerograms of isomeric nonanes (n = 9) plotted 
versus the terminal Wiener indices of the respective kenograms. The five disjoint groups of 
data points pertain to p = 2; 3; 4; 5; 6 (from left to right). How much the behavior of 
terminal Wiener indices differ from that of Wiener indices is evident by comparing Figs. 2 
and 4. 

The peculiar form of the relation between TW(Pl) and TW(Ke) calls for explanation. 
Our results obtained along these lines are presented in the subsequent sections. 

In what follows, for the sake of simplicity we shall say that an edge of a tree T is of 
(p1, p2)-type, if on its two sides there are p1 and p2 pendent vertices. 

 
2. ON STRUCTURE−DEPENDENCY OF TW(Ke) 
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In what follows, the kenogram Ke is assumed to possess n vertices, i.e., that it represents an 
alkane CnH2n+2 with n carbon atoms. The corresponding plerogram Pl has thus 3n+2 
vertices, of which 2n + 2 are pendent. 

The kenogram Ke with n vertices has n−1 edges. Its number of pendent vertices will 
be denoted by p. 

The first detail that is noticed by inspecting Fig. 4 (as well as the other analogous 
plots for n ≠ 9) is that the data–points are grouped into several disjoint clusters. It was not 
difficult to recognize that each of these clusters is determined by a particular value of p. 

Indeed, there exists a unique n-vertex kenogram with p = 2, namely the path (= 
kenogram of the normal alkane). It corresponds to the single data–point on the most left–
hand side of Fig. 4. Since all edges of this kenogram are of (1,1)-type, 

 
TW(Ke) = n − 1 for the unique kenogram with p = 2, n ≥ 2 .                  (6) 

 
If p = 3, then each edge of Ke is of (1,2)-type. Therefore, each summand on the 

right–hand side of Eq. (4) is equal to 1 × 2 = 2, resulting in TW(Ke) = 2(n − 1), i.e., 
 

TW(Ke) = 2n − 2 for all kenograms with p = 3, n ≥ 4 .                        (7) 
 
Eq. (7) means that the kenograms of all isomeric alkanes with a single tertiary carbon atom 
and no quaternary carbon atom have equal terminal Wiener indices, whereas the TW-values 
of their plerograms differ. Consequently, the data–points in the second left–hand side 
cluster lie on a single vertical line. 

If p = 4, then the edges of Ke are either of (1,3)– or of (2,2)-type. At least 4 of these 
edges must be of (1,3)-type. Each summand on the right–hand side of Eq. (4) is equal to 
either 1 × 3 = 3 or 2 × 2 = 4, implying 3(n − 1) ≤ TW(Ke) ≤ 3 · 4 + 4(n − 5), i.e., 

 
3n − 3 ≤ TW(Ke) ≤ 4n − 8 if p = 4, n ≥ 5 .                                    (8) 

 
If p = 5, then the edges of Ke are either of (1,4)– or of (2,3)-type. At least 5 of these 

edges must be of (1,4)-type and at least one must be of (2,3)-type. Each summand on the 
right–hand side of Eq. (4) is equal to either 1 × 4 = 4 or 2 × 3 = 6, implying 4(n − 2) + 6 ≤ 
TW(Ke) ≤ 4 · 5 + 6(n − 6), i.e., 

4n − 2 ≤ TW(Ke) ≤ 6n − 16 if p = 5, n ≥ 7 .                                  (9) 
In an analogous manner we obtain:  

 
5n − 1 ≤ TW(Ke) ≤ 9n − 33 if p = 6, n ≥ 8                                   (10) 
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6n + 6 ≤ TW(Ke) ≤ 12n − 54 if p = 7, n ≥ 10 .                              (11) 
 

Eqs. (6)–(11) imply that the clusters of data–points for p = 2; 3; 4 are disjoint for all 
values of n. On the other hand, for n being sufficiently large, the data–points for p ≥ 5 
overlap. In particular, for n = 15 there exist kenograms with p = 5 and p = 6, having equal 
TW-values. For n > 15 some kenograms with p = 5 have greater terminal Wiener indices 
than some kenograms with p = 6. For n = 13 there exist kenograms with p = 6 and p = 7, 
having equal TW-values. For n > 13 some kenograms with p = 6 have greater terminal 
Wiener indices than some kenograms with p = 7. Examples are depicted in Figs. 5 and 6. 

 
 

Fig. 5. Two kenograms of order 15 with different number of pendent vertices, but equal 
terminal Wiener indices: p(Ke1) = 5, p(Ke2) = 6, TW(Ke1) = TW(Ke2) = 74. 
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Fig. 6. Two kenograms of order 14 where the species with smaller number of pendent 
vertices has greater terminal Wiener index: p(Ke3) = 6, p(Ke4) = 7, TW(Ke3) = 93, TW(Ke4) 
= 90. 

The analysis of the cases p ≥ 8 is analogous, yet somewhat more complicated.  
Whereas in the case p = 3, all data–points lie on a single vertical line, if p ≥ 4, from 

Fig. 4 we see that there exist several such vertical lines. This is caused by the fact that there 
are only a few possible distributions of (p1, p2)-edge types. The following theorem shows 
what happens when the (p1, p2)-type of just one edge is changed. 
 
Theorem 2.1. Let Ke be a kenogram possessing p pendent vertices, whose relevant struc- 
tural details are indicated in Fig. 7. Perform the transformation Ke → Ke′ as indicated in 
Fig. 7. Let the edge uv of Ke be of (q, p − q)-type. Then 
 

TW(Ke′) − TW(Ke) = q(p − q) − (p − 1) .                                 (12) 
 
If q = 1, then we have the trivial case TW(Ke′) = TW(Ke), whereas if q ≥ 2, then TW(Ke′) > 
TE(Ke). 
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Fig. 7. The kenograms playing role in Theorem 2.1 and the labeling of their relevant 
structural details. 
 
Proof. In the kenogram Ke the edges uv, ij, and jk are of types (q, p − q), (1, p − 1), and (1, 
p − 1), respectively. In the kenogram Ke′ the edges uj, jv, and ik are of types (q, p − q), (q, 
p − q), and (1, p − 1), respectively. Therefore, by Eq. (4), 

TW(Ke) = q(p − q) + (p − 1) + (p − 1) + terms same for both Ke and Ke′ 
TW(Ke′) = q(p − q) + q(p − q) + (p − 1) + terms same for both Ke and Ke′ 

 
from which Eq. (12) follows straightforwardly.                                                                               � 
 

The below special cases of Theorem 2.1 are worth particular attention. 
 
Corollary 2.1. 
(a) If p = 4, then because q ≤ ہp=22 = ۂ, it must be q = 2 and therefore TW(Ke′) − 
TW(Ke) = 1. 
(b) If p = 5, then because q ≤ ہp=22 = ۂ, it must be q = 2 and therefore TW(Ke′) − 
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TW(Ke) = 2. 
(c) If p = 6, then either q = 2 or q = 3, resulting in either TW(Ke′) − TW(Ke) = 3 or 
TW(Ke′) − TW(Ke) = 4. 

 
From Fig. 4 we see that the distance between the vertical lines in the p = 4 cluster is 

unity, whereas this distance in the p = 5 cluster is two. Corollary 2.1 provides an 
explanation of these facts. The separation between the vertical lines in the clusters with p ≥ 
6 can be rationalized analogously, but the situation there is somewhat more complicated. 
 
3. ON STRUCTURE−DEPENDENCY OF TW(Pl) 

The dependency of the terminal Wiener index of plerograms on molecular structure appears 
to be much more complex than in the case of kenograms. In order to gain some information 
on this dependency, we have analyzed in detail the case p = 3. This, of course, is the 
simplest non-trivial case, in which (as explained in the preceding section), all kenograms 
have the same TW-value. 

Denote by Ke(a1 , a2 , a3) the kenogram with n vertices, having exactly one vertex of 
degree 3, to which branches with a1 , a2 , and a3 vertices are attached. Thus, a1 + a2 +a3 +1 
= n . By convention, a1 ≤ a2 ≤ a3 . The plerogram corresponding to Ke(a1, a2, a3) will be 
denoted by Pl(a1 , a2 , a3). 

The plerogram Pl(a1, a2, a3) has p*= 2n + 2 pendent vertices. Bearing in mind that 
therefore it has pכ edges of (1,p1 − כ)-type, by applying Eq. (4), we get 
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A lengthy calculation leads then to: 
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Thus, the actual value of the terminal Wiener index of this plerogram depends on the length 
of the three branches, namely on the parameters a1 , a2 , and a3 . 

From Eq. (13) it is not immediately seen which choice of the parameters a1, a2, a3 
corresponds to the greatest and which to the smallest TW-values. Nevertheless, we 
established the following: 
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Theorem 3.1. Let n ≥ 4, a1 +a2 +a3 = n−1 and a1 ≤ a2 ≤ a3 . Among the plerograms Pl(a1, 
a2,a3), the greatest terminal Wiener index is achieved for a1 = a2 = 1 ,a3 = n−3, whereas the 
smallest if a3 − a1 ≤ 1. 
  

The ordering of plerograms Pl(a1, a2, a3) between the above specified extremal 
values was found to follow a complicated pattern that depends on the actual value of n. 
 
4. APPENDIX: A GENERALIZATION 

Because of chemical reasons, kenograms of alkanes are trees whose maximal vertex degree 
is at most 4. Therefore, plerograms are trees whose all vertices have degrees 1 or 4. The 
results obtained earlier [5, 8] for the Wiener and terminal Wiener indices of kenograms and 
plerograms, namely Eqs. (1) and (5), can be generalized in the following manner (see also 
[4]).  
Let T be an n-vertex tree with maximal vertex degree ∆. Let R be an integer, such that R ≥ 
∆. Let v1, v2, . . . , vn be the vertices of T and let the degree of vi be di , i = 1, 2, . . . , n. 
Construct the tree Tכ by attaching R − di pendent vertices to the vertex vi and doing this for 
all i = 1, 2, . . . , n. 
 
Theorem 4.1. The Wiener indices of the trees Tכ and T are related as 
 

.1)1(2)1()()1()( 222* +−+−+−= nRnRTWRTW                                (14) 
The terminal Wiener index of Tכ is related with the Wiener index of T as 

 

.1)32()1)(2()()2()( 22* +−+−−+−= nRnRRTWRTTW                     (15) 
 
Remark 4.1. If R = 4, then the tree T may be viewed as a kenogram, in which case Tכ 
would be the corresponding plerogram. Eq. (1) is the special case of Eq. (14) for R = 4. Eq. 
(5) is the special case of Eq. (15) for R = 4. 
 
Proof. The tree Tכ consists of pendent vertices and vertices of degree R. The number of 
vertices of degree R is n. The number of pendent vertices is 

 

.2)2()1(2)()(
1 1

* +−=−−=−=−= ∑ ∑
= =

nRnRndRndRTp
n

i

n

i
ii  

Therefore Tכ has a total of n(Tכ) = (R − 1)n + 2 vertices. 
The Wiener index of a tree T can be computed by means of the formula [2, 9] 
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∑=
e

TenTenTW )()()( 21                                                               (16) 

where n1(e|T) and n2(e|T) are the number of vertices of T, lying on the two sides of the 
edge e. Summation in (16) goes over all edges of the tree T. For any edge e, 

.)()( 21 nTenTen =+                                                                     (17) 

 
When applying formula (16) to the tree Tכ, we need to take into account the it has p(Tכ) 
edges incident to a pendent vertex, each contributing to W(Tכ) by 1×[n(Tכ)−1]. If e is an 
edge connecting two vertices of degree R, then its contribution to W(Tכ) is [(R − 1) n1(e|T) 
+ 1][(R − 1) n2(e|T) + 1]. Then 

]1)()1][(1)()1[(]1)([)()( 21
*** +−+−+−= ∑ TenRTenRTnTpTW

e
 

which, by bearing in mind relation (17) and the fact that the summation in the above 
expression goes over n − 1 edges e, results in Eq. (14). 

For the terminal Wiener index of Tכ we have to apply Eq. (4). Using an analogous 
reasoning as for W(Tכ) we get 

∑ +−+−+−=
e

TenRTenRTpTpTTW ]1)()2][(1)()2[(]1)()[()( 21
***  

which then straightforwardly yields Eq. (15).                                                                        � 
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