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ABSTRACT

Liouville equation with an indefinite weight function which has two zeros and/or singularities
in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G.
Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points
and turning points, Math. Nachr. 229, 51-71 (2001)] for a special fundamental system of the
solutions of Sturm-Liouville equation, we obtain the asymptotic behavior of it’s solutions and
eigenvalues, then we obtain the infinite product representation of solution of the equation.

I In this paper, we investigate infinite product representation of the solution of a Sturm- I

Keywords: Singularities, turning points, Sturm-Liouville problem, non-definite problem,
infinite products, Hadamard's theorem.

1 INTRODUCTION

We consider the Sturm-Liouville equation of the form
y'+ (A’ (O -at)y =0, 0<t<l, (1)

with initial conditions y(0,4)=1,y'(0,4) = 0,0n a finite interval |1 =[0,1]. Here A = p” is
the spectral parameter. We assume that the weight function ¢° is real with a finite number
of zeros and/or singularities of first order in the open interval (0,1), these zeros and

singular points are the so—called turning points of (1). Moreover, these turning points are
admitted to be singularities of first order of the potential functionq(t). The Sturm—Liouville
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2
problem is said to be non-definite if the quadratic form Iol|y(t)| #* (t)dt associated with this

equation is indefinite on the space of all differentiable functions y in the interval I, having

the special property (see [9] for more details).
The representation of solutions of Sturm-Liouville equations by means of an
infinite product is a direct consequence of the fact that any solution y(t,4) defined by a

fixed set of initial conditions (as we have seen above) is necessarily an entire function of 4
for each fixed t € |, whose order does not exceed 1/2 (see [3]). It follows from the classical
Hadamard’s factorization theorem that such solutions are expressible as an infinite product,
and so this gives an alternate description that has not been used as of yet for approximation
purposes in the various applications.

The importance of asymptotic analysis in obtaining information on the solution of
Sturm-Liouville equation (1) with multiple singularities and turning points was realized by
Freiling and Yurko [5] and Eberhard, Freiling and Stoeber in [4]. Also, inverse problem for
equation (1) with singularities or turning points of even order were studied in [10].

The subject Sturm-Liouville problem can also be seen inside the wider context of
ordinary differential equations on multistructures, that have been a subject of increasing
interest in the recent years, in relation with several problems arising in physics,
engineering, chemistry, quantum chemistry and chemical engineering. Also, this
autonomous equation arises in mechanics, combustion theory, and the theory of mass
transfer with chemical reactions. For example, in (1), to a quantum physicist or chemist,
q(t) is a potential function describing a potential field, an eigenvalue A is an energy level

and its eigenfunction is the corresponding wave function of a particle, the two together
describing a bound state (for details see [11]). Also, equation (1) in the singularity case,
appears in some chemical models ([13]), and in the chemical photodissociation of
methyliodide (see [12] and [2]).

The inverse problem of reconstructing the potential function q(t) from the given
spectral information and corresponding dual equation cannot be studied by using the
asymptotic forms. In fact, in asymptotic methods one cannot generally express the exact
solution in closed form. The closed form of the solution is needed in methods connected
with dual equations. The representing solution of the infinite product form plays an
important role in investigating the corresponding dual equations. In the previous article
([10]), first an equation with one turning point of even order was considered, and derived a
formula for the asymptotic distribution of the eigenvalues and the solutions. Then, by a
replacement, the equation with turning point transformed to the differential equation with a
singularity of the form (1) on the interval [0,T ], where (t) is a real function having a

singularity and its form is
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q(t) =

GRS

where 0<t, <T, and F =z’ —%, g, -t) " eL(0,T), u=(4¢+2)", /eN. The

solution Yy(t, 1) of such an equation (1) with initial conditions was found to have the infinite

product form

y(t, 2) =%n fesem [T 22 e, k=,
n1 Sh

where C, =(0,1,), C, =(t,.T), r R, {5, }n21 is the sequence of positive zeros of Ji,5 (Jj,,1s
the Bessel function of order 1/2), and the sequence {a)n (t)}

-, Tepresents the sequence of

positive eigenvalues of corresponding boundary value problem

1/a)n(t)=f2+0(%), te(0,T)\{t,}.

In this paper, first, we define a fundamental system of solutions (FSS) of equation

(1) for | ,0| — o (see section 2). Using these asymptotic solutions we derive a formula for

the asymptotic distribution of the eigenvalues, further we obtain the infinite product
representation of the solution, see Section 4.

2 NOTATIONS AND PRELIMINARY RESULTS

We consider the differential equation
y'+ (¢’ -a)y=0, tel=[0]], ()

where A = p? is a real parameter, (t),4°(t)are real functions, g(t)has two singular points

t,t, of firstorderin I, (0 <t, <t, <1), that these points are turning points of P
Definition 1. (i) We define the following intervals for fixed £ >0 (¢ is sufficiently small):

Il,z: :[Oatz _8]9 IZ,E :[tl +8,1].

(i1) We recall that there are four different types of zeros of order /. For v =1,2:
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I, if ¢, isevenand #*(t)t-t,) " <0 inl ,
I, if ¢, isevenand ¢*(t)t—t,)™" >0 inl
s NI, if ¢, isodd and ¢*(t)(t—t,)"" <0 inl,,
IV, if ¢, is odd and ¢#*(t)t-t,)" <0 inl,,,
is called type of t, .

Assumption 1. (i) The functions
¢v,0 : Iv,g - R7 ¢v,0 (t) = (‘t _tv)_év ¢2(t)’ V= 1)27
are non—vanishing and real-analytic, where ¢/, =/, =1.

(i) For te | t=t,, v =12, the functionq(t) has the form

at=A(t-t)",

v,
with positive constants

So, according to Definition 1 and Assumption 1, t, is of type Il while t, is of type
IV According to the type of t;, we know from [4] that in the sector

T
S, ={p | argpe[—z,o] }

there is exists an FSS of (2) { w, (T, p), W, (L, ) } and such that

|¢(t)|*%e"’ﬁ ) 0<t<t,
Wi, (t,p)= . (3)
' I pj \¢>(x)\d><+i£
lpt)| 2e" ‘1] t, <t<t,,
1 Zip[ 1400 dx i 1600 dx
¢(t)2{e e [1]} 0<t<t,,
“4)

W, (t,p)=
1 ,pf \¢(x)\dx+i%[
) 1]

()] 2e

t, <t<t,,
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where [1]=1+ O(l) ,as p — o, and for next uses we have

ip|¢(t)|§e"’“1“’“*)‘d* 1] 0<t<t,

W1’,1 (t,p)= . . Tz (5)
plpo)ze”™ "] f<t<t,,
_ p‘¢(t)‘% %e*ipﬁ,W(X)\dx [1]+ eip,ﬁ,W(x)\dX [1]} 0<t<t,,

Wi, (t, p) = oo . (6)
~ plpe f<t<t,.

On the other hand, since t, is of type IV, we also have the following FSS { w,(L o)W, (L 0) }

|¢(t)|’%ep£2 [p00]dx [] t, <t<t,,

_ 7)
W2,1 (t’ p) B i ! x)|dx—i —i ' x)|dx—i (
|¢(t)li{epj‘2¢( ] e 4[1]} t, <t<l,

‘¢(t)\_% e—pflz |6(0)]dx [1]

t, <t<t,,
T (8)
sy ze 1] t, <t<l.
That leads to the followings :
1 ' X X
p|¢(t)|5e”£2‘¢( 1] t, <t<t,,
: _ 9)
W2,l (ta p) - ot _i= i t Oldx—iZ (
p|¢<t>|;{ie ety e ke “[1]} t,<t<l,
L —pf! |g0o]ox
—p\¢(t)\ze ’ [1] t <t<t,, 10
W, (t. p) = ! of (19)
—iplpt)ze 1] t, <t<l.

It follows that the wronskian of FSS satisfies
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{W( Wy, (L, p), W, (L, p) )= —2ip[1l (11)

W( w,, (t, p),W,, (L, p) ): _2/3[1]7

as |p|—)oo.
Notation 1. For —2 <k <1 and (t, p) €[0,1]x S, we denote

9(t)

Ec(t,p)= Zepakﬂk"(t)bkn 1),

n=1

and o ,=a,=-1, oy, =—a_, =1, f,,(t) =0, also

0<8< By )< B, () <...< B, (t) <2max{R, (1),R_(1)},

where the integer-valued functions ¢ and b,, are constant in every interval [0,t, —&]and

[t, +&,t, —&] for ¢ sufficiently small and

R, () = j; Jmax{0,9*(0ldx , R ()= j; Jmax{0,-4% () Jdx.

3 ASYMPTOTIC FORM OF THE SOLUTION

We consider the differential equation (2) with the following conditions

C(0,4)=1 , C'(0,)=0. (12)

Applying the FSS { wy, (L, 0), W, (1, p) } for tel, . we have

l,&

C(t, p) =c,wy, (t, p) +C, W, (L, 0),

that using of Cramer's rule leads to the equation

Clt,p) = —— (W, (0, pW,, (L, p)— W, (0, pIW, (1, )
W(p)

where
W(p)=W(w, . w,,)=-2ipll]
Taking (3)-(6) in to account we derive
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! ! i ' x)|dx - ' x)|dx
;¢(O)z¢(t)‘z{ eI ] g blele } 0<t<t,
C(tap): 1 1 1 J‘[W( )‘d I\ ‘¢( )‘d (13)
. L P X)|dx -p Xx)| dx
FALN40! { M, (p)e 1]+ My (e } t<t<t,,
where
L[ poolaiZ ip[M o]l
M, (p) = —le g ! +epI° ‘, (14)
M, (p) = o Pl ol
,(p) = :
In addition, differentiating (13) we calculate
1 1 i ' x)|dx —i ' X)|dx
;ip¢(0)z¢(t)z{ e "hleie ] _ g hieology) } 0<t<t,,
C'(t,,D): | . . J‘t\lif( ) J.t"/’( d
2z 2 P X)| dx -p x)|dx
2p¢(0)2¢(t)2{ Mi(ose ™ (1= M, (e 1] } t<t<t,
Hence we have estimated the solution of (2) defined by the initial conditions (12) in I, . In

order to find the solution in I, ,, we fix te(t,t,) and use (7)-(10), and Cramer's rule to

determine the connection coefficients A (p),A,(p) with

Ct,p) = A(pIW,, (L, p) + AW, , (L, p),
C'(t, p) = A (p)W;, (t, p) + AW, , (L, p),

for T, = IV . Consequently

pf, 1900]dx i

p

1oL
A(p)==|p0)2 M,
(p) 2\415( )2 M, (p)e 15)

As(p) = 0 M, (pre "H "

Substituting (15) and estimates of w,,(t, p)and w,,(t,p) from (7) and (8) in the case

t, <t <1 we derive the continuation of the solution to the interval (t,,1] in the form :
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Clt.p) = %¢(0)2¢(t>2{ N (e kT 1 N (e }

where

1y ty t t2
. —ip| |#(0ldx+p | T |p(0)]dx ip| |o(0)|dx+p| “|#(x)]|dx
Nl(p) = —je L) LI +e In Itl ,

.ot t2 . oru t2 ot ty
- d d d d - dx— d
ip [ [p00]dxs o[ * #00]ax N ienpjo |00l dxep *g00]dx e ipf, [800]dx=p] * |90 g

N,(p)=¢e
Thus, we deduce the following theorem.

Theorem 1. Let C(t,p) be the solution of (2) under the initial conditions C(0,4)=1,
C'(0,4) =0, then the following estimates hold :

ipﬁM(X)\dx

o)z @ ), ost<t,

L pf [po0fdeso ! |60/

C(ta /0) = |¢(O)| |¢(t)| Ek (ta p)a t1 <t < t29

! pj \¢(x>\dx+pj \¢(x>\dx+upj |#(0]dx

|¢(0)| )| 2e E, (L, p), t, <t<I.

4 EIGENVALUES AND INFINITE PRODUCT REPRESENTATION OF THE
SOLUTION

We consider the boundary value problem L, =L, (#°(t),q(t),s) for equation (2) with

boundary conditions

C(0,4)=1, C'(0,4)=0, C(s,4)=0.

The boundary value problem L, for se(0,t) has a countable set of positive

eigenvalues {xln+ (S)}nZl . From (13), we have the following asymptotic distribution for each

{/1n+(s)}rlZl holds :

7Z'
i) =2 () =——2—+0(b). (16)

I“ poojdx "
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The spectrum {/”Ln} of boundary value problem L, for t, <s<t,, consist of two

sequences of negative and positive eigenvalues: {/1n (S)} = {/lnf(s)}u {/In+(s)}, neN, such
that

72' 7Z'
() =4, (8) = I 4 ol () =2, (9) = +ol).

poodx " J" |¢(x>|dx n
(17)

Similarly for t, <s <1, from the estimates of C(t, p) we see that :

T 7Z'
(8=, (s ——t—+ol, PO =h =24 vold). 8

| lpoojax 1¢<x>| n

Since the solution C(s, p) of Sturm-Liouville equation defined by a fixed set of
initial conditions is an entire function of p for each fixed s €[0,1], thus it follows from
the classical Hadamard's factorization theorem (see [8, p. 24]) that such solution is
expressible as an infinite product. For fixed s € (0,t;) by Halvorsen's result [6], C(s, p) is

. : 1
an entire function of order 5 Therefore we can use Hadamard's theorem to represent the

solution in the form

A
C(s,A)=h 1-—
e =nel]1- 45 )

nx1

where h(s) is a function independent of A but may depend on S and the infinite number

of negative eigenvalues, {/1,] (S)}:;1 form the zero set of C(s,1) for each S.

Since C(s,4,(S)) =0, these A (S) correspond to eigenvalues of the boundary value

problem L, on the closed interval [0,S], 0 <s <t,. We rewrite the infinite product as
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C(s.2) = h(s)H(l——J— (s )H(l () J (19)

e\ A (S) sl
with
h;(s) = h(s)
1;[/1 ()
T
nr—-—
where £ = 2 and R_(s) is defined in Notation 1.

+

Now (16) implies that f_ﬂz =1+ o[%) . It follows from the results of [7] that the
2 (8) n

infinite product 17 S s absolutely convergent on any compact subinterval of (0,t,).

2,(8)

2
The function 41 is continuous and so the O -term is uniformly bounded in S.

A,(8)

Theorem 2. Let C(t,A) be the solution of (2) satisfying the initial conditions C(0,1) =1,

C'(0,A)=0.Thenfor 0<t<t,,

ct.A= %|¢(0)|2|¢(t)|_2H (4 (®) - ARI(©®

where R, (1) = fé q/max%0,¢2(x) de, ¢,, n>1, is the sequence of positive zeros of J,,

derivative of the Bessel function of order one, the sequence A, (t),n>1, represents the

sequence of positive eigenvalues of the boundary value problem L, on [0,t].

Proof. According to [6] the infinite product

(4 () = DR (L)
=

5

is an entire function of A, whose roots are precisely A, (t), n=>1. From [1, p. 370] we have

3 (2) = { ~R(v,7)sin@—S(v,7)cosd |,

where v is fixed and
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&, A 16K =1 [ (v,2k)
RO-D = 2, (D 4v2—(4k+1)21(2r)2k}

__u=Du+1s)
21(87)°

& A A0k -1 (v,2k)
Sw.7)= 2D 47— (4k +1)? 1(2@2“}

_u+3  (uoDu=9u+35)
87 31(87)°

6’=r—(z+ljﬂ,
2 4

as |r| = oo, where i =4v’. Now, by inserting 7 = R (t)ﬁ , and from [1, p. 370], we get
H y g ¥

I1 (4 (1) ;?)Rf ©_ 2cos(+JAR, ())[1].
Thus from (13) and (19), we obtain
BTV N ISP
h(t) = L O-HRO) 2|¢5(0)| g0 2. u
g

Similarly, for s=t, t, <t<t,, the boundary value problem L, on [0,t] has a

infinite number of negative and positive eigenvalues with are denoted (17). By Hadamard's
theorem, the solution on [0,t], t, <t <t,, has the form

A A

Let Tn, n=123,..., be the positive zeros of J, (7). Then (see [1])

%:HO(%), %:HO(%).
R’ (D4, (1) n R2(D4;(1) n



38 S. MOSAZADEH

- Tnz Tn ’
RZDA, 1) H R (t) A, (t)

for each t € (t,,t,) . Therefore we may write

Consequently, the infinite products] | are absolutely convergent

A=A ()R (t At - DRI,
H( 52)) ()H( ()@) ()’

2
n

Ct,A)=g,(t)

€2y

n>1 n nx1 J

with
~ 2 2
- Jn

J
R’ ()4, (t)H RI(MA; ()

g, ®O=9®]]

Theorem 3. For t, <t <t,,

1 -1 1 Ry 2 a1 ) 5
C(t, 1) =%|¢(o)|z|¢(t)| 2 (R_(DR, (t))ZH( " ig))R_ (t)H( (- DRI(M)

n>1 In n>1 an

Proof. According From Lemmas 2 and 3 of [7] the infinite products

T (A=A, ()RZ(M) 1 (4 () - DRI
’7/2 b ’.\/2
n>1 Jn n>1 Jn
are entire functions of A for fixed t, those roots are precisely {l; (t)} and {l; (t)}, nx1,
respectively. Moreover

[ AOROAODRG) et {cos(& (V2 =7 +0(

3 ~3
n>1 Jn nl Jn E(Rf MR, (t))gx/z

)

as A — . Thus by (21) and using of the asymptotic expansion of C(t,4) in (13) we get

6,(0)= — =IOkl R OROF.  w
G- ZOR O hO-HR'G) 8

We can proceed similarly, for s=t, t, <t <1, to obtain
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“1-4,0) R’ (tz)H (4O - AR (M) .

ct,n=fo]]

nx1 n nx1 J

Thus, we have the following theorem.

Theorem 4. For t, <t <1,

Lol LT (A=A, (H))R? () — A)R;
C(t,l)=%|¢(0)|2|¢(t)|2(R_(t)R+(t))2H( n(JNtz) _(tz)H( n('[)T ) +(t).

2
n>1 n nx1 Jn
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