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ABSTRACT 

The atom bond connectivity index of a graph is a new topological index was defined by E. 

Estrada as ( ) (d ( ) d ( ) 2) / d ( )d ( )G G G Guv EABC G u v u v   , where 
Gd ( u )  denotes degree 

of vertex u. In this paper we present some bounds of this new topological index.  
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1. INTRODUCTION  

A graph is a collection of points and lines connecting a subset of them. The points and lines 

of a graph also called vertices and edges of the graph, respectively. If e is an edge of G, 

connecting the vertices u and v, then we write e = uv and say "u and v are adjacent". A 

connected graph is a graph such that there is a path between all pairs of vertices. A simple 

graph is an unweighted, undirected graph without loops or multiple edges. A molecular 

graph is a simple graph such that its vertices correspond to the atoms and the edges to the 

bonds. Note that hydrogen atoms are often omitted. 

Molecular descriptors play a significant role in chemistry, pharmacology, etc. 

Among them, topological indices have a prominent place [1]. One of the best known and 

widely used is the connectivity index,  , introduced in 1975 by Milan Randić [2], who has 
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shown this index to reflect molecular branching. Recently Estrada et al. [3, 4, 5] introduced 

atom-bond connectivity (ABC) index, which it has been applied up until now to study the 

stability of alkanes and the strain energy of cyclo - alkanes. This index is defined as 

follows: 

G

( ) G

( ) ( ) 2
( )

( ) ( )

G

e uv E G G

d u d v
ABC G

d u d v 

 
  , 

where ( )Gd u  stands for the degree of vertex u.  

Recently, Graovac and Ghorbani defined a new version of the atom-bond 

connectivity index namely the second atom-bond connectivity index: 
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Some upper and lower bounds for the ABC2 index of general graphs have been given in [6]. 

The goal of this paper is to study the properties of ABC and ABC2 indices. Our notation is 

standard and mainly taken from standard books of chemical graph theory [7]. All graphs 

considered in this paper are finite, undirected, simple and connected. One can see the 

references [8  17], for more details about topological indices. 

 

2. MAIN RESULTS AND DISCUSSION 

In this section, we present some properties of atom bond connectivity indices. We refer the 

readers to references [18, 19]. 

The first Zagreb index is defined as 1( ) ( ) ( )G Guv E
M G d u d v


  , where dG(u) 

denotes the degree of vertex u. The modified second Zagreb index 
*

2 ( )M G  is equal to the 

sum of the products of the reciprocal of the degrees of pairs of adjacent vertices of the 

underlying molecular graph G, that is, 

*

2

1
( ) .

( ) ( )uv E
G G

M G
d u d v
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Theorem 1 ([18]). Let G be a connected graph with n vertices, p pendent vertices, m edges, 

maximal degree ∆, and minimal non-pendent vertex degree δ1. Let M1 and *

2M  be the first 

and modified second Zagreb indices of G. Then 

*

1 2

1
( ) 1 [ 2 (δ1 1)]( ).

Δ Δ

p
ABC G p M m p M        

 

Corollary 1 ([18]).With the same notation as in Theorem 1, 
*

1 2( ) ( 2 ) ,ABC G M m M   

with equality if and only if G is regular or bipartite semiregular. 

 

Theorem 2 ([19, Nordhaus–GaddumType]). Let G be a simple connected graph of order n 

with connected complement G . Then 

3/4

3/4

2 ( 1) 1
( ) ( )

( 2)

n n k
ABC G ABC G

k k

 
 


                              (1) 

where k = max{∆, n  δ – 1}, and where ∆ and δ are the maximal and minimal vertex 

degrees of G. Moreover, equality in (1) holds if and only if G ≈ P4. 

 

Theorem 3 ([17]). Let G be a simple connected graph of order n with connected 

complement G . Then 

2

3 2 2 2
( ) ( ) ( ) 1

22 2

nn
ABC G ABC G p p

n n k k

   
        

    
           (2) 

where p, p  and δ1, 1δ  are the number of pendent vertices and minimal non–pendent vertex 

degrees in G and G , respectively, and k = min{δ1, 1δ }. Equality holds in (2) if and only if 

G ≈ P4 or G is an r-regular graph of order 2r + 1. 

 

Theorem 4. Let G be a connected graph of order n with m edges and p pendent vertices, 

then  

   2
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Proof. Clearly, we can assume that n ≥ 3. For each pendent edge uv  of graph G  we have 

nu = 1 and nv = n – 1. For each non-pendent edge uv  of graph G  we have (nu + nv  2)/nunv 

< 1. So 

 2
, 1 , , 1

2 2 2

2
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A simple calculation shows that the Diophantine equation x + y – 2 = xy does not have any 

integer solution. Then the upper bound does not happen.  

Theorem 5. Let T a tree of order n > 2 with p pendent vertices. Then 

     2
2 2

1 2
1 2

n
ABC T p n p

n


   

  

with equality if and only if 1,1  nKT  or  2 ,T S r s  where n = 2r + s + 1. 

 

Proof. For any edge uv of trees we have .u vn n n   If T be an arbitrary tree with 3n  

vertex, then 2ABC is simplified as 

 
 
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1

22 
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
TEuv vunn

nTABC  

Now we assume, the treeT  have p pendent vertex, then there are exist p  edge that 1un  

and 1 nnv . For each non-pendent edge uv  of tree T , 2,2  nnn vu  and then 

 2 2u vn n n  . This implies that  2 2u vn n n   and so 
 

1 1

2 2u vn n n



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Hence,  

 
  

 
   

2
, ,

1 , 1

1 1
2

1 2 2
2 1 . 7

1 21 2 2

u u v

uv E T uv E Tu v u v
d d d

ABC T n
n n n n

p n p n
n p n p

nn n

 
 

 

 
 

   
  
 

   
       
    

 



A Note on atom bond connectivity index                                                                                    s71 

 

Suppose now that equality holds in (6), we can consider the following cases: 

Case (a): p = n  1. From equality in  7 , we must have 1 nnu  and 1vn  for 

each edge  TEuv  and vu nn  , that is, each edge uv  must be pendent. Since T  is a tree, 

1,1  nKT . 

Case (b): p < n  1. In this case the diameter of T  is strictly greater than 2. So there 

is a neighbor of a pendent vertex, sayu , adjacent to some non-pendent vertex k. Since nu = 

n – 2
 
and nv = 2 for each non−pendent edge  TEuv , vu nn   we conclude that the degree 

of each neighbor of a pendent vertex is two and each such vertex is adjacent to vertex k. In 

addition, also the remaining pendent vertices are adjacent to vertex k. Hence T is 

isomorphic to  2 ,T S r s  where n=2r+s+1. Conversely, one can see easily that the 

equality in (1) holds for star K1,n-1 or S(2r,s) where n = 2r + s + 1.  

 

3. ATOM BOND CONNECTIVITY INDEX OF NANOSTRUCTURES 

The goal of this section is computing the ABC index of a lattice of TUC4C8[p, q], with q 

rows and p columns. Then we compute this topological index for its nanotubes. Finally, we 

calculate ABC index of TUC4C8[p, q], see Figure 1. 

1 2 ... p

2

.

.

.

q

 

Figure 1. 2  D graph of Lattice C4C8[4, 4]. 
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Example 1. Let Pn be a path with n vertices. It is easy to see that Pn has exactly 2 edges 

with endpoints degrees 1 and 2. Other edges endpoints are of degree 2. 

2
( ) ( 1)

2
nABC P n  . 

 

Example 2. Consider the graph Cn of a cycle with n vertices. Every vertex of a cycle is of 

degree 2. In other words,  

2
( )

2
nABC C n . 

 

Example 3. A star graph with n + 1 vertices is denoted by Sn. This graph has a central 

vertex of degree n and the others are of degree 1. Hence the ABC index is as follows: 

( ) ( 1)nABC C n n  . 

Consider now 2 dimensional graph of lattice G = TUC4C8[p, q] depicted in Figure 1. 

Degrees of edge endpoints of this graph are as follows: 

 

Edge Endpoints [2, 2] [2, 3] [3, 3] 

Number of Edges of This Type 2p + 2q + 4 4p + 4q-8 12pq-8(p + q) + 4 

 

 

On the other hand by summation these values one can see that: 

2 2 2
( ) (12 8 8 4) (2 2 4) (4 4 8)

3 2 2

2
8 (4 8 8 ) (3 3 2) 2.

3

ABC G pq p q p q p q

pq p q p q

         

      

 

Hence, we proved the following theorem: 

 

Theorem 6. Consider 2 - D graph of lattice G = C4C8[p, q]. Then  

2
( ) 8 (4 8 8 ) (3 3 2) 2.

3
ABC G pq p q p q        

In continuing consider the graph of nanotube H = C4C8[p, q], shown in Figure 2. Similar to 

Theorem 6, we have the following values for endpoint degrees of vertices of H. 
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Figure 2. 2  D Graph of C4C8[4,4] Nanotube. 

 

Edge Endpoints [2, 2] [2, 3] [3, 3] 

Number of Edges of This Type 2p  4p  12pq-8p  

 

 

Thus, we can deduce the following formula for ABC index: 

2 2 2 16
( ) (12 8 ) 2 4 8 3 2.

3 2 2 3
ABC H pq p p p pq p p        

So, the proof of the following theorem is clear. 

 

Theorem 8. Consider 2 - D graph of nanotube H = TUC4C8[p, q]. Then  

16
( ) 8 3 2.

3
ABC H pq p p    

 

Theorem 9. Consider the graph of nanotori K = C4C8[p, q] in Figure 3. The ABC index of 

K is ( ) 8 .ABC K pq  

 

Proof. It is easy to see that this graph has 12pq edges. On the other hand, K is 3 regular 

graph and this complete the proof. 
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Figure 3. 2  D graph of K = C4C8[4,4] Nanotorus. 
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