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ABSTRACT 

The geometric-arithmetic index is another topological index was defined as 
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, where εG(u) is 

the eccentricity of vertex u. In this paper we compute this new topological index for two 

graph operations. 
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1. INTRODUCTION  

By a graph means a collection of points and lines connecting a subset of them. The points 

and lines of a graph also called vertices and edges of the graph, respectively. If e is an edge 

of G, connecting the vertices u and v, then we write e = uv and say "u and v are adjacent". A 

connected graph is a graph such that there is a path between all pairs of vertices. The fact 

that many interesting graphs are composed of simpler graphs that serve as their basic 

building blocks prompts and justifies interest in the type of relationship that exist between 

various graph-theoretical invariants of composite graphs and of their components. The 

composite graphs considered here arise from simpler graphs via several binary operations. 

Such operations are sometimes called graph products, and the resulting graphs are also 

known as product graphs.  
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Let G be a graph on n vertices. We denote the vertex and the edge set of G by V(G) 

and E(G), respectively. For two vertices u and v of V(G) we define their distance dG(u, v) as 

the length of a shortest path connecting u and v in G. For a given vertex u of V(G) its 

eccentricity )(uG  is the largest distance between u and any other vertex v of G. Hence, 

( )( ) max ( , )G v V G Gu d u v   [1-7]. The minimum and maximum eccentricity over all vertices 

of G are called the radius and diameter of G and denoted by R(G) and D(G), respectively.  

The Zagreb indices have been introduced more than thirty years ago by Gutman and 

Trinajestić [8]. They are defined as: 
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Now we define a new version of Zagreb indices as follows [9]: 
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It is easy to see that for every connected graph G, *
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A class of geometric–arithmetic topological indices may be defined as 
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, where Qu is some quantity that in a unique manner can be 

associated with the vertex u of the graph G, see [10]. The first member of this class was 

considered by Vukicević and Furtula [11], by setting Qu to be the 
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, 

where degree of vertex u denoted by deg ( )G u . The second member of this class was 

considered by Fath-Tabar et al. [12] by setting Qu to be the number nu = nu (e|G) of vertices 

of G lying closer to the vertex u than to the vertex v for the edge uv of the graph G: 
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The third member of this class was considered by Zhou et al. [13] by setting Qu to 

be the number mu = mu (e|G) of edges of G lying closer to the vertex u than to the vertex v 

for the edge uv of the graph G: 
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The fourth member of this class was defined by Ashrafi et al. [14] as follows: 
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where ε ( )G u  denotes to the eccentricity of vertex u.  

A fullerene graph is a cubic 3-connected plane graph with (exactly 12) pentagonal 

faces and hexagonal faces. Let Fn be a fullerene graph with n vertices. By the Euler formula 

one can see that Fn has 12 pentagonal and n/2 – 10 hexagonal faces [15,16].  

Sometimes GA4 is a better descriptor for molecular structures than GA index. For 

example, consider two distinct isomers of fullerene C30 depicted in Figure 1. Since every 

fullerene graph is 3 regular, then GA(C38:1) = GA(C38:2). But they have different GA4 

value. In other words, 4 38( :1) 6GA C   and 4 38( : 2) 8GA C  . 

 

  

C38:1 C38:2 

Figure 1. Two distinct isomers of C38. 

 

Throughout this paper our notation is standard and mainly taken from standard 

books of graph theory such as [17, 18] and [19 – 21]. All graphs considered in this paper 

are simple and connected. 

 

2.  MAIN RESULTS AND DISCUSSION 

The aim of this section is to compute GA4(G), for some graph operations. Before going to 

calculate this index for graph operations, we must compute GA4(G), for some well-known 

class of graphs.  

 

Example 1. Let Kn denotes the complete graph on n vertices. Then for every ( )nv V K , 

deg ( ) 1G v n   and ( ) 1G v  . This implies 4
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Example 2. Let Cn denotes the cycle of length n. If n is even then for every i, then i-th row 

of distance matrix of Cn is 1,2,...,0,...,  ( -1) / 2,  / 2,  ( -1) / 2,...,2,1

i

n n n . When n is odd then 

the it is equal to 1,2,...,0 ,..., ( -1) / 2, ( -1) / 2,..., 2,1.

i
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Example 3. Let Sn be the star graph with n + 1 vertices, Figure 2. The central vertex is 

denoted by x and others vertices by u1, u2, …, un. Then for every 1 ≤ i , j ≤ n, we have dG(x , 

ui) = 1 and dG (ui , uj) = 2. So, 



)(

4
3

22

3

22
)(

GEuv

n nSGA .  

 

Example 4. A wheel Wn is a graph of order n which contains a cycle of order n, and for 

which every vertex in the cycle is connected to other graph vertices, Figure 3. Suppose the 

central vertex is denoted by x and the others by u1,u2,,…,un. Then for every 1 ≤i, j ≤ n we 

have dG (x , ui) = 1, dG (ui , ui1) = 1, dG (ui , ui+1) = 1 and dG(ui , uj) = 2j(j ≠ i  1, i+1). So, 

nnnWGA n )1
3

22
(

3

22
)(4  . 

 

Figure 2. The Star Graph with n+1 Vertices. 
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Figure 3. The Wheel Graph with n+1 Vertices. 

 

Theorem 2. Let G be a graph with m ≥ 2 edges. Then 
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This completes the proof. 

The join 1 2G G G   of graphs G1 and G2 with disjoint vertex sets 1V  and 2V  and 

edge sets 1E  and 2E  is the graph union 1 2G G  together with all the edges joining 1V  and 

2V . It is easy to see that 1 2 1 2| ( ) |V G G n n   and 1 2 1 2 1 2| ( ) |E G G m m n n    . 
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For computing the term
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Table 1. Values of ε ( ),ε ( )G Gu v  for edges e = uv. 

Graph G1 G2 
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The disjunction 1 2G G of graphs 1G  and 2G  is the graph with vertex set 

1 2( ) ( )V G V G  and 1 1( , )u v  is adjacent with 2 2( , )u v  whenever 1 2 1( )u u E G or 1 2 2( )v v E G . 
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