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ABSTRACT 

Let G  be a simple graph and ),G(   denotes the number of proper vertex colourings of G  

with at most   colours, which is for a fixed graph G , a polynomial in  , which is called the 

chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we 

obtain the chromatic polynomials of some nanostars. 
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1. INTRODUCTION 
 

  

A simple graph ),(= EVG  is a finite nonempty set )(GV  of objects called vertices together 

with a (possibly empty) set )(GE  of unordered pairs of distinct vertices of G  called edges. 

In chemical graphs, the vertices of the graph correspond to the atoms of the molecule, and 

the edges represent the chemical bonds. 

  Let ),(  G  denotes the number of proper vertex colourings of G  with at most   

colours. G. Birkhoff [4], observed in 1912 that ),(  G  is, for a fixed graph G , a 

polynomial in  , which is now called the chromatic polynomial of G . More precisely, let 

G  be a simple graph and N . A mapping },{1,2,)(: GVf  is called a   -

colouring of G  if )()( vfuf   whenever the vertices u  and v  are adjacent in G . The 

number of distinct  colourings of G , denoted by ),( GP  is called the  chromatic 

polynomial of G . The book by Dong, Koh and Teo [5] gives an excellent and extensive 

survey of this polynomial. 

 A  topological index is a real number related to a graph. It must be a structural 

invariant, i.e., it is fixed by any automorphism of the graph. There are several topological 

indices have been defined and many of them have found applications as means to model 

chemical, pharmaceutical and other properties of molecules. The Wiener index W  and 

diameter are two examples of topological indices of graphs (or chemical model). For a 

detailed treatment of these indices, the reader is referred to [8,9]. 
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The nanostar dendrimer is a part of a new group of macromolecules that seem 

photon funnels just like artificial antennas and also is a great resistant of photo bleaching. 

Recently some people investigated the mathematical properties of this nanostructures in  

[2,3, 6,10,11,14]. Also we investigated the chromatic polynomials of some certain 

dendrimers [1].  In this paper we would like to investigate some further results of this kind.     

In Section 2, we introduce two graphs with specific structures and state their 

chromatic polynomials. Using  results in Section 2, we study the chromatic polynomials of 

some nanostars in Section 3.  

 

2. CHROMATIC POLYNOMIAL OF CERTAIN GRAPHS 
 

In this section we consider some specific graphs and compute their chromatic polynomial. 

We need the following lemma: 

  

Lemma 1(Fundamental Reduction Theorem (Whitney [12])). Let G  be a graph and e  be 

an edge of G . Then ),(),(=),(  eGPeGPGP  ; where eG   is the graph obtained 

from G  by deleting e , and eG   is the graph obtained from G  by identifying the end 

vertices of e .   

Let mP  be a path with vertices labeled by myyy ,,, 10  , for 0m  and let G  be 

any graph. Denote by )(
0

mGv  (or simply )(mG , if there is no likelihood of confusion) a 

graph obtained from G  by identifying the vertex 0v  of G  with an end vertex y  of 1mP  

(see Figure 1). For example, if G  is a path P , then )(=)( 2 mPmG  is the path mP .       

 
Figure  1.  Graphs mG  and GmG , respectively. 

  

  

Theorem 1([1]). Let Nm . Then, the chromatic polynomial of )(mG  is 

).,(1)(=)),((  GPmGP m  

 

The following theorem gives the formula for computing the chromatic polynomial 

of graphs GmG  as shown in Figure 1. 
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Theorem 2 ([1]).  Let Nm . The chromatic polynomial of 21 )( GmG  is  

).,(),(
1)(

=),)(( 21

1

21 



 GPGPGmGP

m
 

       

Theorem 2 implies that all forms of GmG  have the same chromatic polynomials.   

We need the following Lemma to obtain our results: 

  

Lemma 3([7]). Let G  be a graph with n  vertices and m  edges. Then in the chromatic 

polynomial ),( GP , 

    1.  nGPdeg =)),((  , 

    2.  the coefficient of 
n  is 1, 

    3.  the coefficient of 
1n  is m . 

 
   

3. CHROMATIC POLYNOMIAL OF SOME NANOSTARS 

 

In this section we shall compute the chromatic polynomials of some nanostars. Let us 

consider the nanostar ][1 nNS  ( [3]1NS  has shown in Figure 3).  

 
Figure  2. The kernel of NS . 

  

We shall compute )],[( 1 nNSP . We consider the kernel of [3]1NS  which has 

shown in Figure 2. As usual we denote it by [0]1NS . 
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Figure  3.  NS . 

    

Theorem 3.  The chromatic polynomial of [0]1NS  is  

.5)10105(1)(=)[0],( 32347

1  NSP  

  

Proof. By applying Lemma 1, Theorems 1, 2 and simplifying, we have  

2

3

6

4

1

)),((1)(
=)[0],(






CP
NSP


 

which is equal with 32347 5)10105(1)(   . 

 

The following theorem give us the chromatic polynomial of nanostar ][1 nNS . 

  

Theorem 4.  The chromatic polynomial of nanostar ][1 nNS  is  

.5)10105(1)(=)],[( 232345223

1

nn

nNSP     

  

Proof. By induction on n . The theorem is true for 0=n  by Theorem 3. Now suppose that 

the result is true for less than n  and we prove it for n . Since the chromatic polynomial of 

][1 nNS  is equal with the chromatic polynomial of 

)

times)1n2(3

6C(2)1]n[1NS(



 , 

by Theorem 2, we have   

1n23)
),6C(P31)(

)(1],n[1NS(P=)],n[1NS(P





  

Now by induction hypothesis  
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1232345123

1 5)10105(1)(=)],[(
 

nn

nNSP   

123234123 5)10105(1)(
 

nn
  

.5)10105(1)(= 232345223 nn     

 

  

Corollary 1.   

1. The order of ][1 nNS  is 4224|=][(| 1  nnNSV . 

2. The size of ][1 nNS  is 5.227|=])[(| 1  nnNSE  

 

Proof.  

1. By Lemma 3 )(i , |)(=|)),(( GVGPdeg  . From Theorem 4, 

4224=]))[(( 1  nnNSPdeg . Therefore 4224|=][(| 1  nnNSV . 

2. By Lemma 3 )(iii , the coefficient of 
1|)(|  GV  is equal with the number of edges of 

G . Therefore we have the result by Theorem 4.     

 

Now we shall compute the chromatic polynomial of nanostar nNS . The nanostar 

NS  shown in Figure 4. 

 
Figure  4. NS2[3]. 

  

  

Theorem 5.  The chromatic polynomial of nanostar ][2 nNS  is  

 .5)10105(1)(=)],[(
122345124

2

 
nn

nNSP   

  

 Proof. By induction on n . Since ),(2)(0)(2)(=)[1],( 66662  CCCCPNSP , by Theorem 2,  

.
)),((1)(

=)[1],(
3

4

6

7

2





CP
NSP
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So the theorem is true for 1=n . Now suppose that the result is true for less than n  and we 

prove it for n. Since the chromatic polynomial of nNS  is equal with the chromatic 

polynomial of )(2)1][(

)(2

62 

timesn

CnNS  , by Theorem 2, we have  

nCP
nNSPnNSP 26

3

22 )
),(1)(

)(1],[(=)],[(






  

Now by induction hypothesis  
nn

nNSP 2234524

2 5)10105(1)(=)],[(     

                   
nn 223424 5)10105(1)(     

.5)10105(1)(=
122345124  

nn
  

 

The following corollary is an consequence of Theorem 5 and Lemma 3. 

  

Corollary 2.   

1. The order of nNS  is 4216|=][(| 2  nnNSV . 

2. The size of nNS  is 5.218|=])[(| 2  nnNSE  

 Now, we consider another kind of nanostars. This nanostar denoted by nNS . See NS  

in Figure 5. 

 
Figure  5.  NS  

 

  

Theorem 6.  The chromatic polynomial of nanostar ][3 nNS  is  

 .5)10105(1)(=)],[( 2232345123

3

 
nn

nNSP   

  

 Proof. By induction on n . Since 

3

457

66663

1)1)((1)(
=),(0)(0)(0)(=)[1],(







CCCCPNSP , 

the result is true for 1=n . Now suppose that the result is true for less than n  and we prove 



Chromatic polynomials of some nanostars                                                                               133 
 

it for n . Since )],[( 3 nNSP  is equal with )),(0)1][((

)1(23

63 


timesn

CnNSP


 , by Theorem 2, we 

have  

1236
33 )

),(1)(
)(1],[(=)],[(




nCP
nNSPnNSP




  

Now by induction hypothesis  

2123234523

3 5)10105(1)(=)],[(  
nn

nNSP   

12323423 5)10105(1)(
 

nn
  

.5)10105(1)(= 2232345123  
nn

  

  

 The following corollary is an consequence of Theorem 6 and Lemma 3. 

  

Corollary 3.  

1. The order of ][3 nNS  is 12218|=])[(| 3  nnNSV . 

2. The size of ][3 nNS  is 15.221|=])[(| 3  nnNSE  

   

Theorem 7 ([13]). For any non-trivial connected graph G, the multiplicity of the root 1 of 

),( GP  is the number of blocks in G. 

  

By Theorems 4, 5, 6 and 7  we have the following corollary:  

 

Corollary 4. The nanostars ][1 nNS , ][2 nNS  and ][3 nNS  have 523 2  n
, 524 1  n

 and 

523 1  n
 blocks. 

   

Here we state the following corollary: 

  

Corollary 5. The real chromatic roots of nanostars are integers 0  and 1.   

 

Whitney have the following theorem: 

 

Theorem ([12]). Let G be an (n,m)-graph. Then  

 
 


n

p

m

r

pr rpNGP
1 0

)),()1((),(  . 

where N(p,r) denotes the number of spanning subgraphs of  G with p components and r 

edges. 
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The study of the number of spanning subgraphs  is important for chemist. We think 

that the esearchers are able to use our chromatic polynomials and previous theorems to find 

the number of spanning subgraphs of certain nano-structures. 
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