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ABSTRACT

The mathematical properties of nano molecules are an interesting branch of nanoscience for

researches nowadays. The periodic open single wall tubulene is one of the nano molecules

which is built up from two caps and a distancing nanotube/neck. We discuss how to

automatically construct the graph of this molecule and plot the graph by spring layout

algorithm in graphviz and netwrokx packages. The similarity between the shape of this

molecule and the plotted graph is a consequence of our work. Furthermore, the Wiener,
I Szeged and PI indices of this molecule are computed.
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1 INTRODUCTION

Carbon nanotubes exhibit a large number of new interesting phenomena, therefore many
researches of different areas attracted to work on nanotubes [1]. They are crucial in all sorts
of ways because of the manifold utilities they provide. One interesting feature of carbon
nanotubes is their use as catalyst for improving the hydrogen absorption and desorption [2].
Some researchers are trying to use single-wall nanotubes as reservoir for storing hydrogen
which may use as fuel by penetrating more Hydrogen atoms in the structure of the
molecules[3,4]. One major element of energy research activities of some countries is
reducing or eliminating the dependency on petroleum of transportation systems by
replacing it with new fuels. Hydrogen fuel have the potential to offer cleaner, more efficient
alternatives to today's technology [5]. Therefore, many fuel molecules, including
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nanotubes, with different features have been found and studied up to now. Tubulenes are
types of nanotubes molecules which are studied as fuel, too [3,6,7].

Some physiochemical properties of these molecules depend on their structures.
Simple indirect graph is used to model the structure of these molecules. Despite its
simplicity and lack of some structural characteristics of a molecule, graph of a molecule
comprises important topological information. Numerical values calculated based on a
molecular graph are called topological indices. Several different topological indices with
various applications have been proposed up to now.

In this article, the graph of open periodic single-wall tubulene is generated by an
iterative method. The graph is plotted by spring layout algorithm [8]. In addition, some
topological indices of the graph of this molecule are computed.

2 AUTOMATIC GRAPH CONSTRUCTION OF PERIODIC OPEN TUBULENE

Periodic open single wall tubulene is one of the nano molecules which is built up from two
caps and a distancing nanotube/neck [9]. Periodic closed tubulene is derived from Cgy by
cutting off polar hexagons with the repeat spherical moiety [9]. The figure of periodic
closed tubulene C204(6(56)3(665)3 (656)3 76 —Z[12,0]-1)> 1'24, is depicted in [10] The periodic open
tubulene is open counterpart of closed tubulene which is focused in this article. The precise
figure of open periodic tubulene(((5,6,7)3)VA) is plotted in [10]. The Figure 1 shows a
close plot of this molecule which is one of the consequences of this paper.
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Figure 1. Periodic Open Tubulene.

It is difficult to construct the graph of periodic open tubulene based on its physical
characterizations. Researchers who want to calculate topological indices of these sort of
molecules often try to find the mathematical relations based on the graph of them [11-13].
It seems that finding the adjacency matrix of a nanotube is more useful than finding only
one or two indices of it. One of the most interesting advantages of constructing graph of a
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molecule is the straightforward calculation of the various topological indices. A novel
algorithm for constructing the graph of carbon nanohorn is proposed in [14]. In this article,
an analogous approach has been proposed for constructing the graph of periodic open
tubulene which is discussed in detail in the following paragraphs.

The repetition of three connected sections of pentagons, hexagons and heptagons
constructs the graph of the open tubulene. These sections are shown in the Figure 1 by blue,
green and red colors, respectively. The first and the second sections connect to each other
to construct levels of this molecule. The third section uses for conjunction of the current
level to the previous level, if any exist. Based on this definition of levels, the Figure 1 has
three levels, three first sections, three second sections and two third sections. Each section
rolls different number of pentagons, hexagons and heptagons.

The first section consists of six hexagons and three pentagons, Figure 2. Each
consecutive pair of hexagons interleaves by a pentagon. The Figure 3 has more details on
construction of the first section of the first level. It shows the node number of this section
and how a node connects to other nodes, too. The construction of the first sections of the
subsequent levels is similar to the first section of the first level.

Figure 2. The First Section.
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Figure 3. The Section One.

The second section also consists of six hexagons and three pentagons with different
arrangement in respect to the first section. The second section is connected to the first one
which is shown in the Figure 4.

Figure 4. The Second Section.
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The third section is too simple. It consists of six connected heptagons. The Figure 5
shows the third section.

Figure 5. The Third Section.

Suppose NL denotes the number of levels has been created up to now, and ML
denotes the maximum number of levels which we need to construct the graph. The
algorithm of constructing open periodic tubulene has the following steps:

1. Construction of the first section of the first level

2. Construction of the second section of the first level

3.NL=1

4. WHILE NL <ML DO
4.1. Construction of the first section of the (NL+1)" level
4.2. Construction of the third section of the (NL+1)™ level
4.3. Construction of second section of the (NL+1)™ level
44 NL=NL+1

5. END

The Python programming language is used to implement the algorithms discussed
in this paper. Python is a powerful open source and free scripting language enriched by
many open source modules for wide variety of purposes. It has a very concise, clear,
readable and consistent syntax, yet it has a lot of capabilities and advanced features such as
dynamic typing, generators, exceptions, very high-level dynamic data types and classes.
Several open source and free libraries are developed for working with graphs in Python,
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such as python—graph, NetworkX, py graph, graph—tool, igraph, etc. The NetworkX is
used for creating and manipulating graph objects in this paper. Many types of graphs,
including simple graphs, directed graphs, and graphs with parallel edges and self-loops are
implemented in NetworkX [15]. The following code is the python implementation of the
preceding algorithm for creating open tubulene. The sections and levels are connected
together by pre, nextin, nextst. Variable nv contains the number of nodes created up to now.
Pre=(0,0,0,0,0,0]
nextin=[(0,0,0,0,0,0,0,0,0]
nextst=[0,0,0,0,0,0]
nv = 0
nv=FirstSection (nv,pre,nextin)
nv=SecondSection (nv, nextin, nextst)
for i in range (0, numberOfLevels-1):
nv=FirstSection (nv,pre,nextin)
ThirdSection (nextst, pre)
nv=SecondSection (nv, nextin, nextst)

3 DRAWING THE GRAPH

During development of the preceding algorithm, plotting the resulting graph as shown in
Figures 4 and 5 was used to adjust the algorithm. Therefore, several free and open source
graph drawing tools were tried out. Neato was selected for graph drawing because the
plotted graph by Neato is close to the shape of the molecule. Neato is a part of Graphviz
package that make layouts of undirected graphs. Graphviz is free and open source graph
visualization which is widely used in many areas. The tools in Graphviz take description of
a graph in a simple text language, and create diagrams in different formats, such as images
and SVG for web pages, PDF or Postscript for inclusion in other documents. Many useful
features for concrete diagrams have been added to Graphviz, such as options for colors,
fonts, tabular node layouts, line styles, hyperlinks, roll, and custom shapes.

Graphviz offers both graphical and command line tools. There exist several ways
for using Graphviz from python, but in most cases the Graphviz command line tools are
called to parse files containing a graph definition and render a rasterized image of the
graph. Therefore, Neato can be either run in command line, or invoking it in python by
“os.system” function. This is unsatisfactory for our purposes, and a more direct interface to
the layout algorithms is desirable. There are several python interface libraries to the
Graphviz (e.g. PyGraphviz, pydot, etc.). PyGraphviz have been chosen for this purpose in
this research.

Neato draws undirected graph using a variation of spring algorithm proposed by
Kamada and Kawai [8]. The proposed algorithm places an ideal spring between every pair
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of nodes such that its length is set to the shortest path distance between the endpoints. The
first spring algorithm was proposed by Eades [16]. Since then several researchers have
proposed variations of the spring algorithm [17—-19]. These algorithms are also known as
multidimensional scaling, in statistics. Kruskal and Seery noted their application to graph
drawing in the late 1970s [19]. Spring algorithms are the most simplest and popular
algorithms in force-directed placement graph drawing methods. The graph drawing
problem is modeled by a force-directed algorithm models through a physical system of
bodies with forces acting between them which minimizing the energy of the system by
finding a good placement of the bodies [20]. Force-directed based graph drawing
algorithms yield reasonable layouts in respect to symmetry, structure, clustering and vertex
distribution [21].

The plotted graph of this molecule with 3 levels is shown in the Figure 1. The
plotted graph by the spring algorithm is surprisingly close to the shape of this molecule and
proves the usefulness of this algorithm for drawing real molecule as previously noted in
[14]. Neato supports several shapes for nodes of a graph including circle, point, etc. The
shape of nodes of Figures 3 is circle, but point used in Figures 1, 2, 4 and 5 for achieving
the better figure. Neato also supports more dimensions for drawing a graph. The Figure 6
shows the three dimensional image of plotted graph of the molecule with four levels. It is
difficult to realized the sections and levels in a two dimensional figure which holds a three
dimensional plotted graph.

Figure 6. 3D View of Open Periodic Tubulene Plotted by Neato.
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4 TOPOLOGICAL INDICES

A numerical invariant related to molecular graph of a chemical compound is called a
topological index [22, 23]. Also there is a semi-empirical index which is discussed in
[24,25]. Several different topological indices have been proposed to encode chemical
properties of molecules [26]. These indices are calculated based on graphs of molecules or
graphs of different kinds of networks such as social network [27]. So, by finding the graph
of a molecule (or its adjacency matrix), computing the topological indices of that molecule
is straightforward.

4.1 THE WIENER INDEX

The first topological index which is used in chemistry is the Wiener index. Harold Wiener
developed and used the Wiener index to determine physicochemical properties of types of
alkanes known as paraffin in 1947 [28]. To define, we assume that G is an indirect simple
graph. The Wiener index, W(G), of G with n vertices is the sum of the lengths of shortest
paths between all pairs of vertices of G.

1 n n
WG ==3 ¥ djj «dji =0, (1)
2i=1j=1

4.2 SZEGED INDEX

Ivan Gutman introduced the Szeged index in 1994 [29]. Let E(G) be the set of all edges of
G and e = uv be an edge of G. Define W(e) = ny(e) x ny(e), where ny(e) is the number of

vertices of G closer to u than v, and ny(e) is defined analogously. The Szeged index of G is
the sum of W(e) over all edges of G [12]. So,

S,(G)= Y W(e) (2)

ecE(G)

4.3 PI INDEX

The PI index was introduced by P. V. Khadikar in 2000 [30]. The summation over all edges
uv of G which are not equidistant to u and v is PI index [31]. Based on the notations
introduced in Szeged index, the PI index is defined as follows:

PI(G) = Xlny(e)+ny(e)l. 3)
ecE(G)
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5 RESULTS

Finding the shortest paths between all nodes in a graph is the most time consuming part of
computing of the preceding topological indices. The well known Dijkstra algorithm finds
these shortest paths, but it is impossible to compute these topological indices based on this
algorithm in a reasonable time. Therefore, the Floyd-Warshal algorithm is more suitable for
this problem. This algorithm is basically equivalent to the transitive closure algorithm
independently proposed by Roy [32] in 1959. Current version of this algorithm was
proposed by Ingerman which used three nested for-loop. This algorithm is faster at the
expense of memory. Therefore, the pitfall of this algorithm is the order of memory usage.
The preceding results are computed on a computer with 12 GB main memory running
Ubuntu 64-bit. The Table 1 shows the Wiener index, PI index and Szeged index of open
tubulene with different level numbers.

Table 1: Values of some computed topological indices of diffrenet open Tubulene with
different number of vertex

Level Number Numb.er of Wiener Index | PI Index Szeged Index
Vertices
1 48 5496 2652 26622

10 480 2373096 303108 22289022
20 960 18575496 1238388 187132182
30 1440 62425896 2807268 646311342
40 1920 147748296 5009748 1551890502
50 2400 288366696 7845828 3055933662
70 3360 790787496 | 15418788 8467667982
100 4800 2304738696 | 31530228 24875349462
120 5760 3982199496 | 45439188 43114603782
140 6720 6323212296 | 61882548 68613762102
160 7680 9438369096 | 80860308 102589336422
180 8640 13438261896 | 102372468 146257838742
200 9600 18433482696 1126419028 200835781062

The plot of these indices versus vertex numbers is more readable and clear than numbers in
Tablel. The Matplotlib visualization library is a standard package for curve plotting in
Python. The Figures 7, 8 and 9 have been obtained using this library. The Matplotlib
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automatically regulates the axes ratio. It shows the axes ratio on the plot. The diagram of

the Wiener index versus vertex number is shown in Figure 7. The axes ratio of this plot is
10",
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Figure 7. The Wiener Index Versus Vertex.

The diagram of the Szeged index versus vertex number is shown in Figure 8.
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The diagram of the PI index versus vertex number is shown in Figure 9.
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Figure 9. The PI Index Versus Vertex.

Table 2: Polynomial for the Wiener Index.

RMS 0 1 2 3 4 5

n

1 | 1886833697 | —5214293688 | 1965227

2 | 262437466 | 1771561032 | —1487965 | 328.5

3 1 1.69458e—-06 —5304 155 —7e-13 ] 0.02

4 | 1.8528e—06 -5304 154.99 4e—12 | 0.02 | 2e-20

5| 1.026e-05 -5304 155 —7e-13 | 0.02 | —1e-20 | 5e-25

Table 3: Polynomial for the PI Index.

91

n RMS 0 1 2 3 4 5
1 7820939 —-29239212 14422.5

2 1.04¢e—-08 1428 -31.5 1.375

3 3.22e-08 1428 -31.5 1.375 | 3.4e-19

4 2.27e-08 1428 -31.5 1.375 | —le-18 | 6e-23

5 9.4e-08 1427.99 -31.5 1.375 | -2e-18 | 2.e-22




92

Table 4: Polynomial for The Szeged Index.
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n RMS 0 1 2 3 4 5
1 | 20635483310 | —56905553562 | 21396835.25

2| 2886812122 | 19486947558 | —16364897 | 3592.25

3| 2.802e—05 —282138 4423.25 -21.25 | 0.22917

4 1.66e—05 —-282137.9 4423.25 -21.25 | 0.22917 | 2e-19

5| 9.0298e-05 —282138 4423.25 —21.25 | 0.22917 | 8.7e-19 | —3e-23

In Tables 2—-4, RMS denotes the root mean square error of curve fitting. The
polynomials recorded in Tables 2—-4, when n = 3, 2, 3, are the best polynomials that is fitted
to the Wiener, PI and Szeged indices of this molecule, respectively.

6 CONCLUSIONS

A new intuitive method for constructing the graph of open tubulene is proposed and
discussed in this article. Several packages and tools based on Python programming
language are used to implement the algorithm. The spring method is used to plot the
constructed graph. A consequence of using this method is the similarity between the picture
of open periodic tubulene and plotted graph. Three major topological indices, namely the
Wiener, PI and Szeged indices of this molecule are calculated based on the constructed
graph. Memory and time cost is the problems against calculating these indices unbounded.
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