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ABSTRACT 

Let e be an edge of a G connecting the vertices u and v. Define two sets N1 (e | G) and       
N2(e |G) as N1(e | G)= {xV(G) d(x,u) d(x,v)} and N2(e | G)= {xV(G) d(x,v) d(x,u) }.The 
number of elements of N1(e | G)  and N2(e | G) are denoted by n1(e | G)  and n2(e | G)  , 
respectively. The Szeged index of the graph G is defined as Sz(G) )()( 21 GenGenEe  . In 

this paper we compute the Szeged index of a 4,4׳-Bipyridinium dendrimer.  
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1 INTRODUCTION 

Dendrimers are macromolecular nanoscale objects that are widely recognized as precise, 
mathematically defined, covalent core-shell assemblies. Since dendrimers are well defined 
organic molecules in the size range of (1 to 15) nm and are known to act as hosts for guest 
molecules, they are promising candidates as templates for the formation of inorganic 

nanoclusters [56].  
A topological index is a real number related to a molecular graph. It must be a 

structural invariant, i.e., it does not depend on the labeling or pictorial representation of a 
graph. There are several topological indices have been defined and many of them have 
found applications as means to model chemical, pharmaceutical and other properties of 
molecules. Here, we consider only one topological index containing Szeged index of 
dendrimers. The Wiener index,W(G), of a molecular graph G is defined as the sum of the 
distances between all pairs of vertices [7]. In other words, 
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where iP is the length of the path that contains the least number of edges between vertex i 

and vertex j in the graph G and n is the maximum possible number of i and j. 
Mathematical topological methods occupy an eminent place in the field of 

prediction of properties and activities of chemical compounds, and even materials. These 
methods, known under the acronym QSPR/QSAR (quantitative-structure-property or 
structure-activity relationship) are normally, but not always, based on graph theoretical 
descriptors, where molecules are seen as chemical graphs, i.e., as a set of vertices attached 
to each other by a set of non-metrical connections [2]. These descriptors are known also as 
topological indices. They are the simplest means of describing the structure of a molecule, 
characterizing it by a simple number [1]. A huge number of topological indices are known 
[3-4] but in spite of that, interest in topological indices has grown remarkably during recent 
years. 
 

2  COMPUTATIONS 

Let hi be a hexagon which is in the stage i and i

jie ,1  be the edge which is in between hi and 

hi1. Now assume that e is an edge of hn for all 6 edges: n1(e | G)=3, the number of these 

hexagons is n2 . If e is an edge of hn1 for 4 of the edges we have n1(e|G) = 1×6+1×2+3 = 
11 and for the other 2 edges: n1(e|G) = 2×6+2×2+3 = 19, the number of these hexagons is 

n 12  . We continue until to achieve stage 1. If e is an edge of 1h for 4 of the edges, we have: 
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and for the other 2 edges, we have: 
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andthe number of these hexagons is 2. 
Suppose that e is an edge of the hexagonh0, for all of edges ofh0, we have: 
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and the number of these hexagons is 2. 
Figure 1, shows a 4,4׳-Bipyridinium dendrimer which has grown n stages. 
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Figure 1. Bipyridinium-׳4,4 Dendrimer. 
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Now we obtain a formula for 
A
 : 
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Now n1(e|G) is computed for i

jie ,1 . Suppose e is the edge of n
ne 3,1 , we have 
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and for 1
0,1e :  1

1 0,1 | 1n e G a   the number of these edges are 2. Suppose that e is the edge 

of between two central hexagon, we have: 
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Now we obtain a formula for 
B
 : 
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Now the Szeged index of the above dendrimer is obtained in the following formula: 

 4
A B C

Sz G      that A is the set of hexagons edges  and B is the hexagons between 

edges set. 
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3  CONCLUSION 

Let Gn  be the graph of a  4,4׳-Bipyridinium dendrimer. The number of vertices of this 
graph is equal to :r=2×[(2n-1)×6 +(2n-2)×2]+14.

 In this paper, we can computed the  Szeged index of this dendrimer in general  case. 
In fact, the Szeged index of a  4,4׳-Bipyridinium dendrimer when it grows n stages is as 
follows::

   n n n n1792 n 4 +1344 2 n-3552 4 +3142 2 +561nSz G         

The Szeged index of 4,4׳-Bipyridinium dendrimer which have grown 10 stages is 
summarized in the following table: 
 

 nGSz    224262 11   nnr  N 

437 26 1 
15925 58 2 
143773 122 3 
954381 250 4 

5474157 506 5 
2884209 1018 6 

143864237 2042 7 
691020973 4090 8 

3229797037 8186 9 
14789547693 16378 10 
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