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ABSTRACT 

In this paper, a Chebyshev finite difference method has been proposed in order to solve 
nonlinear two-point boundary value problems for second order nonlinear differential 
equations. A problem arising from chemical reactor theory is then considered. The approach 
consists of reducing the problem to a set of algebraic equations. This method can be regarded 
as a non-uniform finite difference scheme. The method is computationally attractive and 
applications are demonstrated through an illustrative example. Also a comparison is made 
with existing results. 
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1. INTRODUCTION 

Consider the mathematical model for an adiabatic tubular chemical reactor which processes 
an irreversible exothermic chemical reaction. For steady state solutions, this model can be 
reduced to the ordinary differential equation [1,2,3]. 
 

( ) exp( ) 0,u u u uλ λµ β′′ ′− + − =                                                      (1) 

with boundary conditions 

'(0) (0), (1) 0.u u uλ ′= =                                                              (2) 
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The unknown u  represents the steady state temperature of the reaction, and the 
parameters ,λ µ  and β  represent the Peclet number, the Damkohler number and the 
dimensionless adiabatic temperature rise, respectively. The existence of solutions 
(sometimes multiple solutions), for particular ranges, have been considered by several 
authors [1,2]. A numerical solution of (1) with boundary conditions in (2) is reported in 
[3,4]. In [3] the problem is converted into a Hammerstein integral equation, by using 
Green's function technique, and then the solution is obtained by using Adomian's method.  
The authors of [4] used Sinc-Galerkin method for solving (1)-(2). Sinc-Galerkin method 
consists of reducing the solution of (1)-(2) to a set of algebraic equations by expanding the 

( )u x  as Sinc function with unknown coefficients. The properties of Sinc function are then 
utilized to evaluate the unknown coefficients. 
In the present paper, we first consider the nonlinear differential equations 

( )( ) , ( ), ( ) ,u x F x u x u x′′ ′=                                                      (3) 

with boundary conditions 

0 0 0(0) (0) ,a u b u c′+ =                                                             (4) 

1 1 1(1) (1) ,a u b u c′+ =                                                             (5) 
where 0 1 0 1 0, , , ,a a b b c  and  1c  are given constants and  F is an analytic function. We then 
solve a problem which falls into this category from chemical reactor theory. Our idea is to 
apply the Chebyshev finite difference method (ChFD) to discretize Equation (3) to get a 
nonlinear system of algebraic equations, thus greatly simplifying the problem. ChFD has 
proven to be successful in the numerical solution of various boundary value problems. This 
method can be regarded as a non-uniform finite difference scheme. In this method the 
derivatives of the function ( )u t at a point jt  is linear combination of the values of the 

function u  at the Gauss–Lobatto points cos( / )kt k Nπ= , where 0,1,2,..., ,k N=  and j  is 
an integer  0 j N≤ ≤  [5-8]. The organization of this paper is as follows: In the next section 
we describe the basic formulation of ChFD method required for our subsequent 
development. In Section 3 the ChFD is used to approximate the solution for (3)-(5). In 
Section 4, we report our numerical finding for (1),(2) and demonstrate the accuracy of the 
proposed numerical scheme by considering a numerical example. 
 

2. PRELIMINARIES  

The well known Chebyshev polynomials of the first kind of degree n  are defined on the 
interval [ 1,1]−  as 
 



ChFD Method for Boundary Value Problems               3 
 

 

1( ) cos( cos ( )), 0,1,....nT t n t n−= =  
Obviously 0( ) 1,T t =  1( )T t t=   and they satisfy the recurrence relations: 

1 1( ) 2  ( ) ( ),             1, 2, ...nn nT t t T t T t n+ -= - =  

We choose the grid (interpolation) points to be the extrema 

cos , 0,1,2,...,k
kt k N
N
π = = 

 
 

of the N th-order Chebyshev polynomial ( )NT t . These grids, 

1 1 01 ... 1N Nt t t t−= − < < < < =  

are also viewed as the zeros of 2(1 ) ( )t T t− &  where ( )T t dT dt=& . Clenshaw and Curtis [9] 
introduced the following approximation of the function ( )u t : 

0 0

2( ) " ( ), " ( ) ( )
N N

N n n n j n j
n j

u t a T t a u t T t
N= =

= =∑ ∑                                      (6) 

The summation symbol with double primes denotes a sum with both the first and last terms 
halved. The first and second derivatives of the function ( )u t  at the point kt  are given by 
[7,8] 

( ) ( )
,

0

( ) ( ), 1, 2.
N

n n
N k k j j

j

u t d u t n
=

= =∑                                             (7) 

where 
 

1
(1)
,

00
( )

4
( ) ( ), , 0,1,..., .

N n
j n

k j n j l k
ln l

n l odd

nd T t T t k j N
N c
θ θ−

==
+

= =∑ ∑  

2 22
(2)
,

00
( )

2 ( ) ( ) ( ), , 0,1,..., .
N n

j n
k j n j l k

ln l
n l even

n n ld T t T t k j N
N c
θ θ−

==
+

−
= =∑ ∑  

with 0 1/ 2nθ θ= = , 1jθ =  for  1, 2,..., 1j N= − ,  and  2oc = ,  1ic =  for 1i ≥ . 

 
As we see from (7), the first and second derivatives of the function ( )u x at any point from 
the Gauss–Lobatto nodes are expanded as linear combination of the values of the function 
at these points. 
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3.       DISCRETIZATION OF THE PROBLEM  

In this section we solve the nonlinear second-order boundary value problems (3)-(5) by 
using ChFD method. For this purpose since the Gauss–Lobatto nodes lie in the 
computational interval [ 1,1]−   in the first step of this method, the transformation 2 1t x= −  
is used to change equation (3) to the following form: 

( )4 ( ) ( 1) / 2, ( ), 2 ( ) ,u t F t u t u t′′ ′= +                                                                                    (8) 

also the boundary conditions (4) and (5) are changed to 

0 0 0( 1) 2 ( 1) ,a u b u c′− + − =                                                                                                   (9) 

1 1 1(1) 2 (1) ,a u b u c′+ =                                                                                                        (10) 
Now, to find the solution ( )u t  in (8) , by applying the ChFD method, a collocation scheme 
is defined by substituting (6)  in (8) and evaluating the result at the Gauss–Lobatto nodes kt  
for 1,2,..., 1k N= −  and using equation (7)  we obtain 

(2) (1)
, ,

0 0
4 ( ) ( 1) / 2, ( ), 2 ( ) ,

N N

k j j k k k j j
j j

d u t F t u t d u t
= =

 
= + 

 
∑ ∑       1, 2,..., 1,k N= −                          (11) 

for 0k = and  k N=  by using the boundary conditions (9) and (10) we obtain 
 

(1)
0 0 , 0

0
( ) 2 ( ) ,

N

N N j j
j

a u t b d u t c
=

+ =∑                                                                                           (12) 

(1)
1 1 0, 1

0
( ) 2 ( ) ,

N

N j j
j

a u t b d u t c
=

+ =∑                                                                                             (13) 

Therefore equations (11) ,(12) and (13) generate a set of 1N +  nonlinear algebraic 
equations, which can be solved for the unknown ( ), 0,...,ku t k N= .  Consequently ( )u t  
given in equation (6) can be calculated. 
 

4.        ILLUSTRATIVE EXAMPLE  

 To validate the application of  ChFD method to (1),(2), we use particular values of the 
parameters, 10, 3λ β= =  and  0.02µ =  For such values for the parameters, a unique 
solution is guaranteed by the contraction mapping principle [3]. For this problem, by using 
the contraction mapping principle, the required integrations cannot be done analytically and 
are evaluated numerically using the trapezoidal rule. In order to use ChFD method, by 
using  equations (11), (12) and (13) we have 
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(2) (1)
, ,

0 0

4 ( ) 2 ( ) ( ( )) exp( ( )) 0, 1, 2,..., 1,
N N

k j j k j j k k
j j

d u t d u t u t u t k Nλ λµ β
= =

− + − = = −∑ ∑              (14) 

(1)
,

0

2 ( ) ( ) 0,
N

N j j N
j

d u t u tλ
=

− =∑                                                                                                 (15) 

(1)
0,

0
( ) 0.

N

j j
j

d u t
=

=∑                                                                                                                  (16) 

Thus by solving 1N +  nonlinear algebraic equations (14),(15),(16) and by 
substituting the ( )ku t  for 0,...,k N=  to equation (6) the approximation solution can be 
found. Here we choose 9N =  and 11N = . Table 1 gives a comparison of the results from 
the contraction mapping principle [3], the shooting method [3], the Adomian's method [3], 
the Sinc-Galerkin method [4] and  present method with 9N =  and 11N = . 
 

Table 1. Comparison of  ( )u x  which has been found for 9,11N = . 
 

x Contraction 
Principle 

Shooting 
Method 

Adomian's 
Method 

Sinc-Galerkin 
Method 

ChFD 
Method 

N = 10 N = 20 N = 9 N = 11 

0.0
 

0.006079
 

0.006048
 

0.006048
 

0.006049
 

0.006048
 

0.006046
 

0.006048  

0.2
 

0.018224
 

0.018192
 

0.018192
 

0.018197
 

0.018192
 

0.018190
 

0.018192  

0.4
 

0.030456
 

0.030424
 

0.030424
 

0.030437
 

0.030424
 

0.030423
 

0.030424  

0.6
 

0.042701
 

0.042669
 

0.042669
 

0.042649
 

0.042669
 

0.042666
 

0.042669  

0.8
 

0.054401
 

0.054371
 

0.054371
 

0.054383
 

0.054371
 

0.054369
 

0.054371  

1.0
 

0.061459
 

0.061458
 

0.061458
 

0.061459
 

0.061458
 

0.061459
 

0.061458  

 
 

From Table 1 we see that the results using ChFD method with 11N =  agree with 
those of the Sinc Galerkin method,  (with 20N = ) shooting method and Adomian's method 
up to the sixth decimal place. It is worth to mention here that, in Sinc Galerkin method  the 
result will be obtain  by solving (2 1)N +  nonlinear algebraic equations, but  in ChFD 
method the result will be obtain  by solving only ( 1)N +  nonlinear algebraic equations. 
Furtheremore in Figure1 the residual functions 
  ( ) ( ) ( ( )) exp( ( ))N N N Nu x u x u x u xλ λµ β′′ ′− + −  are  plotted for 11N =  and 20N = . 
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5.         CONCLUSION  
   
This paper described an efficient method for solving nonlinear two-point boundary value 
problems with applications to chemical reactor theory.  Our approach was based on the 
Chebyshev finite difference method. This approach requires the definition of grid points 
and it can be applied  to satisfy differential equation and the boundary conditions at these 
grid points. The method is computationally attractive and applications are demonstrated 
through an illustrative example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Plot of the Residual Functions for 11N =  (left) and 20N =  (right). 
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