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ABSTRACT

Distance-balanced graphs are introduced as graphs in which every edge uv has the following
property: the number of vertices closer to u than to v is equal to the number of vertices closer
to v than to u. Basic properties of these graphs are obtained. In this paper, we study the
conditions under which some graph operations produce a distance-balanced graph.
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1. INTRODUCTION

For an edge e = ab of a graph G, let n? (e) be the number of vertices closer to a than to b.
That is, nf (e) ={u € V(G) | d(u, a) < d(u, b)}| . In addition, let ng (e) be the number of
vertices with equal distances to a and b; ng (e)={u € V(G) | d(u,a) =d(u, b) } .

Here is our key definition. We call a graph G distance-balanced, if nf (e) = an (e)

holds for any edge e = ab of G. These graphs were, at least implicitly, first studied by
Handa [4] who considered distance-balanced partial cubes. The term itself, however, is due
to Jerebic et al. [1] who studied distance—balanced graphs in the framework of various
kinds of graph products. The transmission T(u) of a vertex u € V is defined as follows:
T(u)=%,ev d(uv).

A graph G is said to be transmission-regular if all its vertices have the same
transmission. As examples of transmission-regular graphs, we can cite the complete graph
Knon n > 2 vertices, the complete bipartite graph K, , on 2n > 2 vertices.
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Let G and H be two graphs. The corona product G o H is obtained by taking one
copy of G and [V(G)| copies of H; and by joining each vertex of the i-th copy of H to the i-
th vertex of G, 1 =1, 2, ..., [V(G)|, see [2,3]. The join G + H of graphs G and H with
disjoint vertex sets V; and V, and edge sets E; and E; is the graph union G U H together
with all the edges joining Vi and V,. The symmetric difference G @ H of two graphs G and
H is the graph with vertex set V(G) x V(H) and edge set

E(G®H)={(u,,u, )v,,v,) |u,v, eE(G) or u,v, eE(H) butnotboth}.

The cluster G{H} is obtained by taking one copy of G and |V(G)| copies of a rooted
graph H, and by identifying the root of the ith copy of H with the i vertex of G, i=1,2 ,...,
|V(G)|. The composite graph G{H} was studied by Schwenk [9]. Throughout this paper
our notation is standard and taken mainly from the standard book of graph theory. We
encourage the reader to consult papers [5,7,8,10-12] for background material as well as
basic computational techniques.

2. MAIN RESULTS

A regular graph is a graph where each vertex has the same number of neighbors. A regular
graph with vertices of degree k is called a k-regular graph or regular graph of degree k. In
this section, we study the conditions under which some graph operations produce a
distance-balanced graph. We begin by the following theorem which states the relationship
between distance-balanced and transmission-regular graphs:

Theorem 1. A graph G is distance-balanced if and only if G is transmission-regular.

Proof. It is well-known fact that if G is a connected graph and uv = e € E(G), then n‘j (e)

= nf (e) ifand only if T(u) = T(v) [6], proving the result. \ 4

Theorem 2. Let G and H be connected graphs. Then G + H is distance-balanced if and only
if G and H are r and k regular graphs, respectively, and | V(G)|-r=| V(H)| - k.

Proof. Consider the following partition of E(G + H):
A={uveE(G+H)|uveV(G)},
B= {uveE(G+H)|uveV(H)},
C={uveE(G+H)ueV(G) and veV(H)}.

We first assume that G and H are r— and k-regular graphs respectively, and
IV(G)|-r=| V(H)|-k. Letuv=e € Aand mg (€)= {x € V(G) | d(u, x) = d(v, x) = 1}|.
Notice that
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0 X=y
de.n (X, y)=11 (x € V(G) and y V(H)) or (xy € E(H))or (xy € E(G))
2 otherwise
Thus we have nS*(e) = degg (U)— MG (e) and nS™H (e) = degg (v)- mS (e).

G

Since G is regular degg (u) = degg (v), and thus nj, He)= n\,G+H (e) . We now assume

that uv = e€B. In a similar way we can see that n®*H(e)=n8H (e). Assume that

uv=eeC. Then we have n°*™ (e) = |V(H)| — degy (v) and nS*H (e) = |V(G)| — degq(u).

G

Therefore, n; +H (e) = nf,3+H (e) and thus G + H is distance-balanced. Conversely, assume

that G + H is distance-balanced. By above argument for an edge e of A, we see nuG+H (e) =

n\,G+H (e) implies that any two adjacent vertices of G have the same degree. Since G is

connected, this implies that G is r—regular for some r. In a similar way we can see that H is
k-regular, for some k. For an edge uv = e € C, it follows again from earlier analysis that

nS*™H (e) = |V(H)| — degn(v) and né*H (e) = |V(G)| - degas(u). Since G + H is distance -
balanced, two above equations imply that | V(H)| — degn(v) = |V(G)| — degg(u). v

Corollary. Let G and H be connected graphs. G + H is transmission-regular if and only if
G and H be r and k regular respectively, such that | V(G)|-r=| V(H)|-k.

Proof. The proof follows from Theorems 1 and 2. v

A graph G is called nontrivial if |V(G)| > 1.

Theorem 3. The corona product of two arbitrary, nontrivial and connected graphs is not
distance—balanced.

Proof. Let G and H be arbitrary, nontrivial and connected graphs and H; be the i-th copy of
H. Assume that uv = e € E(GoH) such that ue V(G) and ve V(H;). Thus, we have :

nc°H (e) = [V(G)| (I V(H)| + 1) — degeon(V) and n&° (e) = 1.

Therefore, we have n° () # nS°" (e). Thus GoH is not distance-balanced. v

Corollary. The corona product of two arbitrary, nontrivial and connected graphs is not
transmission - regular.

Proof. The proof follows from Theorems 1 and 3. \
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Let e = (a,x)(by) € E(G®H) such that ab € E(G), and Nax(e) = {(uv) €
V(G®@H)| d((u,v),(a,x)) < d((u,v),(b,y))}. Consider the following partition of N x(e) :

Aax= {(uv) € V(G®H) |auceE(G), vxg E(H) , ubeE(G) ,vyeE(H) },

Bayxy ={(u,v) € V(G@H) | (uv) # (by), aue E(G) , vxg E(H) , ubg E(G) , vy E(H) },
Cax ={(uv) € V(G®H) |aug E(G), vxeE(H) , ube E(G) , vwye E(H) },

Dax = {(u,v) € V(G®H) |aug E(G) , vxe E(H) , ubg E(G) , vy¢ E(H) } and

Fax = {(a,x)}. We have:

Theorem 4. Let G and H be nontrivial and regular graphs. Then the symmetric difference
G @ H is distance-balanced.

Proof. Let e = (a,x)(b,y) € E(G@H), where abe E(G). Then ngx(€) = [N@x(e)], Nax(e) =
Aax) UB@x U Cax U Dax UFex and Npy(€) = Awy) UBwy U Coy) U Dey) UFey.

On the other hand, since G and H are regular, |Aax | = [Awpyl, - Bax| = 1Boyl: |Cax| =
ICom|: ID@x| = Doyl and |Fax| = [Foyl. Therefore, nax(e) = npy(e). If e = (ax)(b.y),
Xy € E(H), then a similar argument shows that nix(e) = ne,y)(e), proving the result. \ 4

Theorem 5. The cluster of two arbitrary, nontrivial and connected graphs is not distance-
balanced.

Proof. Let G and H be arbitrary, nontrivial and connected graphs and H; be the i-th copy of
H. Assume that uv = e € E(G{H}) such that u is the root of the i copy of H and u # v
€ V(H;). Thus, we have :

n¢™(e) = [V(H)| (IV(G)| - 1)+ ni'(e) and nS™(e) = n!(e).

Therefore, n®™ (e) # n®" (e) and so G{H} is not distance-balanced. v
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