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ABSTRACT

Consider a simple connected graph G with the vertex set V(G). The eccentric and total
connectivity indices of G are defined as £°(G) = 2vev(6) ecc(v)degs(v) and EC(G) =
2vev(G) ecc(v), respectively. Here, degg (v) denotes the degree of a vertex v and ecg (v) is
its eccentricity. In this paper, these two indices are calculated for a given arbitrary caterpillar.
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1 INTRODUCTION

If G is a simple connected graph, V(G) and E(G) denote its vertex set and edge set
respectively. |V (G)| = n(G) is called the order of G. Moreover, the distance between u and
vin G, d;(u,v), is the length of the shortest u — v path in G. The eccentricity of a vertex
v € V(G), ecgz(v), is the maximum distance between v and any other vertex in G. We
define the eccentric connectivity index of G as Y,ey(g) ecs(v)degg(v) and total
eccentricity of G as X ,ey gy ec (v).

By a caterpillar we mean a tree such that by deleting all leaves we obtain a path
which is called the spine of the caterpillar. The vertices of the spine are called the main
vertices and the vertices with degree one are called the secondary vertices. We denote a
caterpillar on m main vertices by T,,.

Throughout this paper, graphs have been assumed to be simple and connected,
unless stated otherwise. A path on n vertices is denoted by P,. Moreover, if no ambiguity is
possible, the subscript G may be omitted.
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2. MAIN RESULTS

In this section, we calculate the eccentric and total connectivity indices of an arbitrary
caterpillar on m main vertices, T,,. By definition, it is clear that for determining a
caterpillar, the number of main vertices and the number of leaves of each main vertex
(secondary vertex) should be known. Let us denote the i —th main vertex (from the left
side) by u; and the j-th secondary vertex of u; by v;;. We also define a map f on the

main vertices of T, as follows:
fi{uy,uy, o, um } — N U {0}
f(uy) = deg(uy) — 1
f(um) = deg(um) -1
f(u;) = deg(u;) — 2 (i=23,...m—1)
In a caterpillar, the eccentricity of each main vertex is equal to the eccentricity of ist
spine added by one and the eccentricity of each secondary vertex is number one plus the
eccentricity of the corresponding main vertex. If we denote the set of main vertices by V;

and the set of secondary vertices by V,, then :
$(Tox) = Xvevy (1, €€(W)deg (V) + Lyev, (1, €€(v)deg (v) (m = 2k)

We calculate each part separately:

Z ec(v)deg (v) =
veV1(Tz2k)

(A+DCRE)+(+2)QRk—1D)+ -+ (fx +2)2k—k +1)
+ (frrr +2)Qk =k + 1) + -+ (for-1 + 202k — 1) + (for + 1(2k)
=i+ ot Ffa)+ o+ + (k+Dfi + (k+ Dfiys +
+ (—Dfor-1) + 2Rk + (4k — 2) + -+ (4k — 2k + 2))

2k

= Zk(z £+ Z( i+ DU + fokoisn) + 6k = 2k

=1

and,
2k
d 1 i = i)Ji i
ZUGVZ(TZk)ec(v) eg(v) = Z(ec(u)+ )fi ;ec(u )f; + Z f;

—(2k><2ﬁ) Z( l+1)ﬁ+2( i+ Dfor l+1+Zfl
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2k k
= @k+ DY fit ) i+ D+ i)
i=1 i=1

As a consequence,
§ (Tokemy) = 4k + DX, fi + 205, (=i + D(f; + far-i+1) + 6k* — 2k

2k k
= (4k+1) ) deg (up) +2 ) (~i + 1)(deg (w) + deg (1))
i=1 =2

—2(3k2+k—1)
my
2

= (@m+1) ) deg (w)+2 ) (=i +1)(deg () + deg (tm_t+1))
i=1 i=2

—3/2m2—m+2
/2

= 2m ) deg (u) + ) deg () +2 ) (~)(deg (uy) + deg (i _+1)
i=1 i=1 i=2

"/

+2 ) (deg (w) + deg (t_i41)) = 3y m® —m +2.

=2

Since X% deg (u) =m+n—2(n= |V, |,
e

£ (Tmgeay) = 2 ) (~D)(deg () + deg (i 111)) — 2 deg(u;) — 2 deg(ity)

=2
+ 1/Zm2 +2n—1)m+3n—4

By using the same method, we can obtain the following results:

Z ec(v) deg(v)
veVy (T2x+1)

2k+1
= (2k) ( Z fit+ 4k> +fi+ fok+r T2+ (k+ D (fr41 +2)
i=1

k
£ D i+ Do+ foriz +4)
i=3

and,

41
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Z ec(v) deg(v)
veVa(Tak+1)

2k+1 k

= @k +1) ) fit (kb Dfera + ) (=1 + (i + foi-is2).

Thus,

2k+1

& (Toksr=my) = 4k + 1) Z fi + 2(fi + fak+1) + (=2k + 2)fi4q

k
+ zZ(—t 4 2)(fi + faniva) + 6k2 + 4k
i=3

2k+1 k

= (4k + 1) deg (w;) +2 ) (—i+ 2)(deg (u;) + deg (Uzk-i+2))
) :

+ 2deg(uy) + 2deg(uyzr4q) + (2 — 2k) deg(uy,,) — 6k? — 8k
m (m—1)/2

=(@2m—-1) ) deg(u) +2 (=i + 2)(deg (w;) + deg (Um-i+1))
2 2

+ 2deg(u,) + 2deg(u,,) + (3 —m) deg (u(m+1)/2) - 3/2 m?—m+ 5/2
Ifn=|vg,,,| then
(m—l)/2

£ (Tn(ezien) = @M=D =2+m) +2 ) (=D)(deg (uy) + deg (tp_is1)) +4(n + 1

i=3

- 2 — deg(u) ~deg(uz) — deg (ugne1), ) ~deglitn-1) ~deg(un))

+ 2 deg(u,) + 2 deg(u,,) + (3 —m) deg (u(m+1)/2) - 3/2 m?—m+ 5/2
(m—l)/2

=2 )" (~i)(deg (w) + deg (t_i,1)) — 2 deg(uy) — 4 deg(u;)

i=3
— (m + 1) deg <u(m+1)/2) — 4 deg(uy,—q1) — 2deg(u,y,) + 1/2 m?2

+2(n—1)m+3n— 7/2
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Now, we can conclude one of our main results as follows:

Theorem 2. 1. Let T, be an arbitrary caterpillar on m main vertices. If |VTm| =n and y;
denotes the i —th main vertex from the left side, then
. ™/

2 )" (~i)(deg () + deg (tm_i41)) — 2 deg(uy) — 2 deg(u) m = 2k
i=2

+1/2m2+2(n—1)m+3n—4

fC(Tm)=< (m_l)/z .
2 ) (~i)(deg () + deg (iti41)) — 2deg(i,) — ddeg(u) m =2k +1

i=3
—(m+ 1) deg (u(m+1)/2) — 4deg(uy,—1) — 2deg(u,,) + 1/2 m?

\+2(n — Dm + 3n — 7/2

Theorem 2. 2. By the previous theorem’s conditions, we have:

"/

D () (deg () + deg (un—i+1)) — deg(ur) — deg(in) m = 2k
i=2
+ 1/4m2 +(n- 1/2)m +2(n—1)

EC(T,) ={ ™Y,
> (~D)(deg (up) + deg (ttmi:1)) — deg(i) — 2 deg(uy)

i=3
m+1

-— deg (u(m+1)/2) — 2deg(uy,—1) — deg(u,,) + 1/4 m2

k+("_1/2)m+2n—7/4 =2k + 1

Proof. By using the methods described for calculation of £€(T,,), we have:
2k k

EC(Ty) = 2k + 1)213- + Z(—i + D(f; + for—iv1) + 3k% + k
i=1 [

=2
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2k k
= 2k +1) Z deg (u;) + Z(—i + 1)(deg () + deg (ugp_i1) — 3k2 — k + 2
i=1 =2

"/

= D (~)(deg (uy) + deg (up-i+1)) — degur) — deg(u) + 1/ m?

+(n- 1/2)m +2(n—-1)

The second part is similar to argument given for the first one and so omitted.
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