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ABSTRACT 

Eccentric connectivity index has been found to have a low degeneracy and hence a significant 

potential of predicting biological activity of certain classes of chemical compounds. We 

present here explicit formulas for eccentric connectivity index of various families of graphs. 

We also show that the eccentric connectivity index grows at most polynomially with the 

number of vertices and determine the leading coefficient in the asymptotic behavior. 
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1 INTRODUCTION 

One of the most serious problems affecting the use of topological descriptors in 

mathematical chemistry is their degeneracy  the fact that there are two or more graphs 

with same value of given descriptor. The recently considered eccentric connectivity index 

and its derivatives were found to exhibit quite low degeneracy. This fact, along with 

simplicity of required computations, makes them potentially very useful for predicting 

various properties of many classes of chemical compounds. Indeed, they have been found 

to perform better than several other standard topological descriptors [3,7,8,9,11]. In spite of 

the growing number of papers concerned with their particular applications, their basic 

mathematical properties have not been studied until very recently. Then two papers 

appeared reporting various upper and lower bounds on the eccentric connectivity index for 

trees subject to certain constraints [13,5]. It was found that the extremal values of the 

eccentric connectivity index among all trees on a given number of vertices are attained on 
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paths and stars. It was also shown that the stars are extremal among all graphs. The main 

goal of this paper is to further this line of research by going beyond the trees. Along the 

way we first give explicit formulas for the values of the eccentric connectivity index for 

several families of graphs in terms of their size, and then prove that the eccentric 

connectivity index grows no faster than a cubic polynomial in the number of vertices. We 

determine the coefficient of the leading term and show that the bound is asymptotically 

sharp by constructing a family of graphs for which the leading term of the cubic bound is 

attained. We also offer an alternative proof of the extremality result for general trees. The 

paper is concluded by indicating some possible directions for future research.  

 

2 DEFINITIONS AND PRELIMINARIES 

All graphs in this paper are finite, simple and connected. For terms and concepts not 

defined here we refer the reader to any of several standard monographs such as, e.g., [4] or 

[12]. 

Let G be a graph on n vertices. We denote the vertex and the edge set of G by V(G) 

and E(G), respectively. For two vertices u and v of V(G) we define their distance d(u,v) as 

the length of any shortest path connecting u and v in G. For a given vertex u of V(G)  its 

eccentricity  (u) is the largest distance between u and any  other vertex v of G. Hence, 

(u) = )(max GVv d(u,v). The maximum eccentricity over all vertices of G is called the 

diameter of G and denoted by D(G); the minimum eccentricity among the vertices of G is 

called the radius of G and denoted by R(G). The set of vertices whose eccentricity is equal 

to the radius of G is called the center of G. It is well known that each tree has either one or 

two vertices in its center. The eccentric connectivity index  (G) of a graph G is defined 

as 

 

),()( uG u   

 

where u denotes the degree of vertex u, i.e., the number of its neighbors in G.  

 

A graph G is vertex-transitive if its automorphism group is transitive. For a vertex-

transitive graph G its center coincides with V(G). Since a vertex-transitive graph is 

necessarily regular, we have a particularly simple expression for the eccentric connectivity 

index of a vertex transitive graph.  

 

Proposition 1.  Let G be a vertex-transitive graph on n vertices of degree  . Then 
 

).()( GRnG    

■ 
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As a consequence, we obtain explicit formulas for the eccentric connectivity indices 

of several familiar classes of graphs.  

 

Corollary 2. 
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Here Kn, Cn, m , mA and mQ denote the complete graph on n vertices, the cycle on n 

vertices, the msided prism, the msided antiprism, and the mdimensional hypercube, 

respectively.   

■  

 

The following results can be easily obtained by a straightforward computation. 

 

Proposition 3. Let nmK ,  be a complete bipartite graph on m  n vertices. For m,n  2, we 

have .4)( , mnK nm   In particular, 2
, 4)( nK nm  for n  2 .   

  ■ 

 

The case of the complete bipartite graph nmK , when one of the classes of bipartition 

is of size 1 is treated separately. In order to facilitate the comparison with other trees on n 

vertices, we find it more convenient to state the result as follows.  

  

Proposition 4. Let 1,1  nn KS  be a star on n   3 vertices. Then )1(3)(  nSn . 

■  

 

The results of Propositions 3 and 4 and the first two cases of Corollary 2 were 

obtained in [13]. 
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Proposition 5. Let Wn and Bn denote the graphs of the pyramid and the bipyramid with 

ngonal base. Then nWn 7)(   and nBn 12)(   .   

       ■  

(The pyramid graph nW is also known as the wheel graph on n spokes.)  

 

The last result of this section is concerned with paths on n vertices. It was also, in a 

slightly different way, reported in [13]. 

 

Proposition 6. Let Pn be a path on n vertices. Then 
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The above result can be written in a more compact form. 

 
Proposition 7. Let Pn be a path on n vertices. Then 
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 3 EXTREMAL TREES 

It was proved in [13] that the path on n vertices and the star on n vertices are extremal with 

respect to the eccentric connectivity index among all trees on n vertices. In this section we 

offer an alternative proof of this fact based on the concept of remote vertices.  

Let Tn be a tree on n vertices. A vertex v V(Tn) is remote if the eccentricity of 

some other vertex of Tn is achieved on v, i.e., if  (u) = d(u,v) for some vertex u  v. A 

remote vertex v is strictly remote if there is a vertex  u V(Tn) such that   (u) = d(u,v) > 

d(u,w) for all vertices w   V(Tn), w   v. For a remote vertex v we denote by Z(v) the set of 

all vertices whose  eccentricity is attained on v. The cardinality of Z(v) we denote by .)(v   

 

Lemma 8. Let w be an interior vertex of Tn . Then w is not remote. 

 

Proof Let v be a vertex from Z(w) and  (v) = d(v,w) is the length of the unique path P in Tn 

connecting  v and w. This path  contains exactly one of 2w  edges  incident with w. By 
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adding to P any of the remaining 1w  edges incident with w, say the edge wu, we obtain 

a path P' that is longer than P. Further, d(v,u)= d(v,w) + 1 ),(v  a contradiction with the 

supposed remoteness of w.  

                                                                                                                             ■ 

 

Hence, any remote vertex is necessarily a leaf. The converse is not true  there are 

leaves that are not remote. However, any tree must contain at least two remote leaves.  

 

Lemma 9.  Every tree on n  2 vertices contains at least two remote leaves. 

 

Proof Let u be an interior vertex of a tree Tn on n vertices. The eccentricity  (u) is attained 

on a leaf v1 of Tn. Further, )( 1v  is attained on some other vertex v2, and v2 is a leaf. Hence, 

both v1 and v2 are remote, and since each tree on n > 1 vertices has at least two leaves, the 

claim follows.  

                                                                                                                                 ■ 

 

The existence of nonremote, or at least non-strictly remote leaves will be crucial 

for our main result.  

 

Lemma 10. Let Tn  Pn be a tree on n vertices. Then there is a leaf v in Tn which is not 

strictly remote. 

 

Proof Since Tn  Pn,  there is an interior vertex w of degree .3w  Also, the number k of  

leaves of Tn is at least three. Let us  denote those leaves by v1, ,  vk, and let vp be such that 

d(w,vp)   d(w,vi) for all  i  p. Let us suppose that vp is strictly remote. Then there is a leaf 

vq such that d(vq,vp) > d(vq,vi) for all i  p.  There is exactly one path P in Tn connecting vq 

and vp, and this path either contains vertex w or not. The two possibilities are shown in Fig. 

1 a) and b), respectively. If P contains w, then the path iP from vq 

 

 
Figure 1: With the proof of Lemma 10. 
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to any of vi, i  p, is at least as long as the path from vq to vp, since the sub-path from w to vi 

is at least as long as the  subpath of  P  from w to vp. This is in contradiction with the 

supposed strict remoteness of vertex vp. If P does not contain w, it must contain a vertex, 

say u, from the path connecting w and vp. Again, by  concatenating the paths from vq to u, 

from u to w, and from w to any of vi, we obtain a path from vq to vi , i p, longer than P 

This implies that   (vq) > d(vq, vp), a contradiction with the fact  that vp is strictly remote.  

                                                                       ■  

 

We now take a tree Tn on n vertices and transform it in the following way. Let v be a 

leaf of Tn that is not strictly remote. It is attached to an internal vertex w.  Let   (v) is 

achieved on a leaf z1. Then  (z1)  (v), since v is not strictly remote. Let z2 is a leaf such 

the .),()( 211 zzdz  Then  (z2)  (z1)   (v). By detaching vertex v from w and 

attaching it to z2 we obtain a tree T’n on the same number of vertices. We say that the vertex 

v is pivotal for the above transformation. The procedure is illustrated in Fig. 2. 
 

 
  

Figure 2: The eccentric connectivity index increasing transformation 

We claim that the described transformation with any non-strictly remote pivotal leaf 

increases the eccentric connectivity index. 
 

Proposition 11. 

).()( nn TT    

 

Proof The eccentric connectivity index of a graph G is computed by summing the 

contributions of the form u (u) over all vertices u of G. Since v is not strictly remote, no 

vertex of Tn will suffer a decrease of its eccentricity when v is detached from w. The degree 

of vertex v is equal to one in both Tn and T’n; however, its eccentricity in Tn is equal to 

(z2)  1, hence exceeding its eccentricity in Tn. (Remember that  (z2)    (v) in Tn.) The 

only contribution in T’n that is smaller than the corresponding contribution in Tn is the one 

of vertex w, since its degree decreased by one. Hence, the difference of the contributions of 
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vertex w to  (T’n) and  (Tn), respectively, is  (w). But this decrease is more than 

compensated for by the increased contribution of vertex z2: its contribution will increase   

by  (z2)  (v)> (w), due to the increased  degree of  z2 in T’n. Finally, there is additional 

increase by one of the eccentricities of all  (z2) > 0 vertices of Z(z2). Hence, the total sum 

of all contributions u (u) of all vertices in Tn strictly exceeds the sum of corresponding 

contributions to   (T’n), and the claim follows.  

■ 

 

Now we can prove the result on extremal trees. 

 

Theorem 12.  Let  Tn be a tree on   n vertices, Tn  Pn, Tn   Sn. Then 
 

 (Sn) < (Tn) < (Pn). 
  

Proof The right hand side inequality follows from Proposition 11. For any tree Tn  Pn it is 

always possible to construct a tree T’n on n vertices with  (T’n) >   (Tn). By iterating the 

above procedure one will always end with Pn. To see that the procedure indeed stops, one 

should notice that vertex v becomes strictly remote in T’n; hence, it cannot be pivotal in the 

next iteration. Further, if w was an interior vertex of degree 3w  in Tn, then the number 

of leaves in Tn that are not strictly remote is decreased by one. If w was an interior vertex of 

degree 2 in Tn, it becomes a leaf in T’n, and it is not strictly remote. Hence we repeat the 

procedure taking w as the pivotal leaf. After a finite number of steps we will reach an 

interior vertex of degree greater than two, and at this point the number of non-strictly 

remote leaves will drop by one. Hence, the iterations stop after a finite number of steps and 

the algorithm terminates with the only tree without non-strictly remote vertices i.e., with Pn.  

 

The left hand side inequality follows by considering a transformation that is, in a 

sense, inverse to the one described above. For a given tree Tn  Sn on n vertices one takes a 

remote leaf, say v, detaches it from its  neighbor u, and attaches it to an interior vertex w of 

the largest degree in Tn, thus obtaining a tree T’’n on the same number of vertices. It  can be 

shown that the increased contribution of vertex w to  (T''
n) is more than offset by the 

decreased contributions of vertices  u , v, and  any vertices of Z(v) if v was strictly remote in 

Tn. The reasoning is analogous to the one used in establishing the right hand side inequality, 

and we omit the details.  

                                                                                      ■ 
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4 EXTREMAL GRAPHS 

It can be inferred from the previous section that the eccentric connectivity index of a tree is 

at least linear and at most quadratic in the number of vertices. Then, none of the eccentric 

connectivity indices of Corollary 2 is more than quadratic in the number of vertices. 

Moreover, from case (5) of Corollary 2 one can see that the eccentric connectivity index of 

the mdimensional hypercube Qm is asymptotically proportional to n (log n)2, where n  2m 

is the number of vertices of Qm. By considering a regular dendrimer one can show that the 

growth rates of the type n log n are also possible among the trees. Hence, the question 

arises: Are the growth rates of the eccentric connectivity index on trees representative for 

all graphs?  

On the lower end of the span the answer is affirmative. It was shown in [13] that the 

n-vertex star has the smallest eccentric connectivity index among all connected graphs on   

n vertices. Furthermore, in the same paper it was established that the linear growth rate of 

the eccentric connectivity index can be also achieved on graphs with cycles.  

The upper edge of the possible range of the eccentric connectivity index is more 

interesting. It is not difficult to see that the eccentric connectivity index of any graph must 

be bounded by a cubic polynomial in the number of vertices. Both the diameter and the 

degree are bounded from above by n-1 and the summation over all vertices results in a 

factor bounded by n. So, for any graph G on n vertices we have  (G) = O(n3). In the rest of 

this section we prove that this upper bound is actually achieved. Furthermore, we find the 

leading coefficient and we prove that the bound is asymptotically sharp.  

 

Theorem 13. Let G be a connected graph on n vertices. Then the maximum possible value 

of the eccentric connectivity index of G is given by 
 

).(
27

4
)( 23 nonG   

 

Proof Let us consider a complete graph on 






3

2n
 vertices and identify one of its vertices 

with an end-vertex of a path on n  






3

2n
 + 1 vertices. We denote the obtained graph by Ln 

and call it a lollipop on n vertices. An example is shown in Fig. 3.  
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Figure 3: A lollipop on 12 vertices. 
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The total contribution of vertices in the attached path is quadratic in n/3, and hence 

cannot affect the leading term in the above expression. Hence 

)(
27

4
)( 23 nonLn  . 

 

We have constructed a graph on n vertices whose eccentric connectivity index is 

cubic in the number of vertices with the leading coefficient of 4/27. Now we show that no 

other graph on n vertices can do (much) better. 

Let G be an arbitrary graph on n vertices and P a diametral path in G of length n-x. 

Then each vertex in V(G) \ V(P) is connected with  at most three vertices of  P . (If a vertex 

v V(G) \ V(P) is  connected with more than three vertices of P, then the distance between 

the end-vertices of P is less than n  x, a contradiction with the fact that P is diametral. 

Moreover, if a vertex v V(G) \ V(P) is connected  with three vertices of P, then these 

vertices must be consecutive.) This gives us an upper bound on the number of edges in G.  
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Since the eccentricity of any vertex cannot exceed the diameter, and the sum of all 

degrees is twice the number of edges, we obtain the following upper bound: 
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Consider now the right hand side of the above expression as a function of x, 

 

f(x) = 2n (4n -1) + (2-17n) x +(n +9) x 2 -x 3. 
 

By using elementary calculus it follows that f'(x) has two real zeros for all n  31 and that 

f(x) achieves its maximum for ).87339(
3

1 2
2  nnnx  The maximum value of  f(x) 

is given by 

)].873329270(6)873322309(3

117873322[
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Since 87332  nn  cannot exceed n for n  31, we have 

 

)(
27

4
)( 23

2 nonxf  . 

Hence )(
27

4
)( 23 nonG    for any graph G on n vertices and the claim follows. 

                                                                                                                         ■  

 

5 FURTHER DEVELOPMENTS 

We have presented the extremal graphs and extremal values for the eccentric connectivity 

index, a graph-theoretical descriptor whose potential usefulness in QSAR/QSPR modeling 

has been empirically confirmed in a number of recent papers. It follows from Theorem 12 

that this index behaves well on class of all trees, achieving its extremal values on two trees 

that are also extremal for several other topological indices. This fact lends some theoretical 

support to its potential for use in predicting properties and behavior of chemical 

compounds. We have also determined the maximum order of growth for this index over 

general graphs. However, much remains to be done. For example, it would be interesting to 

compute the values of  (G) for various classes of linear and reticular polymers. 

Dendrimers of various types should allow expressing their eccentric connectivity indices in 

closed forms, and open and closed nanotubes also seem promising in this respect. It would 

be also interesting to determine the cubic graphs extremal with respect to the eccentric 

connectivity index. Last, but not the least, it would be interesting to explore various classes 

of composite graphs and to see which ones admit nice closed formulas for the eccentric 

connectivity indices. 
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We have left the derivative indices of the eccentric connectivity index completely 

out of the scope of this paper [1,6]. Extending the results of further research also to those 

indices seems the most natural course of future work. 

 

ACKNOWLEDGEMENTS: Partial support of the Ministry of Science, Education and Sport of 

the Republic of Croatia (Grants No. 03700000002779 and 17700000000884) is 

gratefully acknowledged. 

 

REFERENCES 

1. H. Dureja, A.K. Madan Superaugmented eccentric connectivity indices: 

newgeneration highly discriminating topological descriptors for QSAR/QSPR 

modeling, Med. Chem Res. 16 (2007) 331341. 

2. M. Fischermann, A. Hoffmann, D. Rautenbach, L.A. Sźekely, L. Volkmann, 

Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (2002) 

127137. 

3. S. Gupta, M. Singh, A.K. Madan, Application of Graph Theory: Relationship of 

Eccentric Connectivity Index and Wiener's Index with Antiinflammatory Activity, 

J. Math. Anal. Appl. 266 (2002) 259268. 

4. F. Harary, Graph Theory, AddisonWesley, Reading MA, 1969. 

5. A. Ilić, I. Gutman, Eccentric connectivity index of chemical trees, MATCH 

Commun Math. Comput. Chem. 65 (2011) 731744. 

6. V. Kumar, S. Sardana, A.K. Madan, Predicting antiHIV activity of 2,3diaryl1, 

3thiazolidin4ones: computational approaches using reformed eccentric 

connectivity index, J. Mol. Model. 10 (2004) 399407. 

7. V. Kumar, A.K. Madan , Application of Graph Theory: Prediction of Cytosolic 

Phospholipase A2 Inhibitory Activity of Propan2ones, J. Math. Chem. 39 (2006) 

511 521. 

8. V. Lather, A.K. Madan, Application of Graph Theory: Topological Models for 

Prediction of CDK1 Inhibitory Activity of Aloisines, Croat. Chem. Acta 78 (2005) 

5561. 

9. V. Lather, A.K. Madan,  Predicting Dopamine Receptors Binding Affinity of 

N[4(4Arylpiperazin1yl)butyl]Aryl Carboxamides: Computational Approach 

Using Topological Descriptors, Curr. Drug Discov. Tech. 2 (2005) 115121. 

10. S. Sardana, A.K. Madan, Application of graph theory: Relationship of molecular 

connectivity index, Wiener's index and eccentric connectivity index with diuretic 

activity, MATCH Commun. Math. Comput. Chem. 43 (2001) 8598. 



56                                        TOMISLAV DOŠLIĆ, MAHBOUBEH SAHELI AND DAMIR VUKIČEVIĆ 

 

11. V. Sharma, R. Goswami, A.K. Madan, Eccentric connectivity index: A Novel 

Highly Discriminating Topological Descriptor for Structure-Property and 

StructureActivity Studies. J. Chem. Inf. Comput. Sci. 37 (1997) 273282. 

12. D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 

1996. 

13. B. Zhou, Z. Du, On eccentric connectivity index, MATCH Commun. Math. Comput. 

Chem. 63 (2010) 181198. 


