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ABSTRACT

The Wiener index is a graph invariant that has found extensive application in chemistry. In
addition to that a generating function, which was called the Wiener polynomial, who’s
derivate is a g-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in
[The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959-969] attained
what graph operations do to the Wiener polynomial. By considering all the results that Sagan
et al. admitted for Wiener polynomial on graph operations for each two connected and
nontrivial graphs, in this article we focus on deriving Wiener polynomial of graph operations,
Join, Cartesian product, Composition, Disjunction and Symmetric difference on » graphs and
Wiener indices of them.
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1 INTRODUCTION

Let G be a connected graph with vertex and edge set, V(G) and E(G), respectively. The
distance between the vertices u and v of G is denoted by d(u,v) and defined as the number
of edges in a minimal path connecting the vertices u and v. The Wiener index of G is
defined as the summation of all distances over all unordered pairs {u,v}of vertices of G.

The Wiener index W is the first topological index to be used in chemistry [15].
Usage of topological indices in chemistry began in 1947, when chemist Harold Wiener
used the Wiener index to determine the paraffin boiling point [3]. For more information or
results on the Wiener index, its polynomial version, the chemical meaning and its history,
we encourage the interested readers to consult the special issues of MATCH
Communication in Mathematics and in Computer Chemistry [3], Discrete Applied
Mathematics [4] and survey article [2]. For the polynomial aspect of the Wiener and other
topological indices, we refer to [1,6—14]. Our notation is standard and taken mainly from
the book of Imrich and Klavzar [5].
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2 DEFINITIONS

In this section the concepts used throughout the paper are presented. The Wiener
d(u,v)

polynomial of G is defined as W(G;q) = Z{u,v}g v(G)4 , where ¢ is a parameter. It is
easy to see that the derivative of W(G;q) is a gq-analog of W (G).

The join G,+G, of graphs G, =(V,,E,) and G, =(V,,E,) is the graph with
vertex set V(G +G,)=V,UV,and edge set E(G, +G,)=E, VE, UluviueV,veV,}.
For the other operations; Cartesian product, composition, disjunction and symmetric
difference the vertex set is V,xV,. The Cartesian product G,xG, has edge set
{(ug,u))(vi,vp) : (uyv; €Eyanduy =) or (uyvy EE, anduy =v)}, the  composition
G, oG, has the edge set {(u;,uy)(v;,v,) : (v EE;)or (u,v, EE, andu; =w)}, the edge

set of disjunction Gy v G, is {(ug,uy)(v,vp) : (v €E;)or(uyv, EE5)orbothy and the

edge set for the symmetric difference G, DG, is
{(uy,uy)(v,vy) : upv; EE, oruyv, EE, but not both}, see [5] for details. The ordered
Wiener polynomial of G is denoted by W (G;q) = z(u v)cy(G)qd(“’”) , where the sum is over

all ordered pairs (i,v) of vertices, including those vertices that » =v . Thus
W (G;q) =20 (G;q)+[V (G) (1

Throughout this paper, we only consider connected graphs and let for graphs G,, 1

<i<n, [V(G;)=n and |E(G,)

= k; . It will be convenient to have a variable for the non-

edges in G,, so let k; =W-ki . Also Hie¢|Ai| =1, where A, is a set.

3 MAIN RESULTS

In this section the Hosoya polynomials of some graph operations are computed.

Lemma 1.
1) If G; and G, be connected graphs then G;+G:; is connected.
2) The join is associative.
3) |E(G, +G,)| =k, +k, +nyn,
4) Let G,,G,,...,G,, be a graphs then
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m m il
E(G,+G, +...+G,) = Zhi+ X T,
=1 =2 j=I

Proof. The proof is straightforward and so omitted. O

Theorem 1. Let G,G,,...,G,, be connected graphs. Then we have

WG +Gy +..+G,5q) = (Zl.’flkl- + Zl."ziz(ni)ZJ’:jnj)q +( Zl;l-jqz
i=1

Proof. Since distance for every distinct pair of vertices in G1+G; is 1 or 2 by Lemma 1 the
proof'is clear. u

In the following lemma, some well-known properties of Cartesian product are
introduced.

Lemma 2. Suppose G; and G; are graphs with |V(G))| = ni, |V(Gy)| = nz, [E(G1)| = k; and
|[E(G2)| = k. Then the following are holds:
1) G, x G,is connected graphs if and only if G; and G, are connected.

2) The Cartesian product is associative and commutative.
3)|E(G, x G,)| =kn, +k,n,,
4) Suppose G, and G, are connected and nontrivial (not equal to K, ).Then

W(G, xG,:q)=W(G,:q)W(G,:q) )

Proof. The proof for parts 1 and 3 are trivial and for parts 2 and 4 see [7] and [1],
respectively. u
Theorem 2. Let G,,G,,...,G, be connected graphs then we have

1 m m
W (G, x G, x...xGm;q>=5{H[2W(Gi;q>+ni]—l_[ni}

i=1 i=1

Proof. By using Lemma 2 part 4 and utilize relation (1) we have;
W(G, xG,%x..xG,;q) = (W(G1 xG, x..xG,:q)~V(G, x G, x...x GmX)/2

TG en)- 1T

i=1

Lemma 3. Let G; and G, be connected graphs then we have:

1) |E(G1 Osz = kll’l% +k2n1
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2) W(Gl ° Gz;q) =m (kzq + k_2q2)+ n%W(Gl;q)

Proof. The proof of part 1 is clear. To prove part 2, we apply Lemma 2 of [10]. We have:

dg, (uy,u,) U #v
0 u, =v, &u, =v

J v ) (v )= 1= 2 ="

GG, (( 1 2)( 1 2)) 1 u, =v &uzvz € E(GZ) -
2 u, =v, &u,v, ¢ E(G,)

Theorem 3. Let G,G,,...,G,, be connected graphs then we have

m—1 _
W(GIOGZO"'OGm;q):(HniJ(kmq—i_kmq ) (H” J 1aq
i=1
+ illlﬁ n, J( lﬂ[nf j(kmmq + kmfqu )} form=>3
=2 i=1

J=m—I1+2

Proof. The proof is by induction. The case m =2 is a consequence of Lemma 3. Suppose
the result is valid for m graphs and we will prove its validity for m+/ graph. Let
G=G,°G,o..0G, . Then by Lemma 3

W(GeG,.:q) (Hn J( nd kg )+ n W(G:q)

m—1 . m=1 (" m-1

( ] m+1q+km+lq +nm+1 l:(H” ]( mq+kmq + ( n; ]( ]( Y/ ST )
i=1 1= \i=l ——

( W(Gisq } ( ](kmﬂwkmﬂq +nm+1(l_[n ]( q+kq’)

m—1 m -1 m m+1
:Hl { nl j( m—i l+1q +km l+1q )} (Hn j I’q
1=2 i=1 J=m—I+2

m+1
m+lq+km+1q ) (Hl’l J 19q
m m m+1
+ z l:(l_[ n; J( H n]z j(kmnzq + Ky 102q” ):l
=2 i=1

Jj=m—I1+3

Lemma 4. Let G,,G,,...,G,, be graphs, then we have
1) If Gy and G, are connected then G, v G, and G, @ G, are connected.
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2) Let G=G, @G, ®...@G, thenwe have [E(G)| = Y. (-4)"[]* [[n

prAcM i€ed ieM—-4
3) Let G=G,VvG, Vv..vG, then we have |E(G)| = z (- 2)‘A‘71Hki I_Inl2
¢ AM i€ed ieM-A4

where M = {1,2,...,m}_

Proof. The proof of part 1 is clear. We prove part 2 by induction on m. For m=2 one can
see |E(Gl @Gz] =k,n; +k,n’ —4kk,. We now assume the result is valid for m and
H=G®G,,,.So

m+l *

|E(H ) =|E(G)n,.,, +k

v(G) -4E@©G)

K 2)
On the other hand we know P(M U {m+1})= P(M)uU {{m +1}u 4 | Ac M} 3)

m+1

where P(M) is the power set of M. Clearly, ¢ = P(M )N {{m +1}u 4 | Ac M} and so

2= 3 T T <hal]n =4k 3 47 TTE [0 -

gp+AcM icA ie(Mu{erl})— ieM =AM icA ieM—-A
N I ()
¢#=BCM U{m+1} ieB ieMu{erl}—B
The proof of part 3 is similar to the proof of part 2. O

Theorem 4. Let G,,G,,...,G, be connected graphs then

W(lesz...ma;q)z{ ¥ (—2)‘A‘711‘[kl. I nf}q

¢+ AcM ied ieM-A4
and "‘[[Elnl] - ¥ (- 2)‘471 [k, 11 n,-z}qz-
2 g+ AcM icd ieM-A

W(G1®G2®...@Gm;q)=( > (4T anjq

prAcM icA  ieM-A4

Parah

Proof. Since distance between distinct vertices of graphs G, @ G, and G, v G,is 1 or 2,

W(G; q) = |E(G)q + ‘E(Elqz . We now apply Lemma 4 to complete the proof. O
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We conclude this paper by computing the Wiener index of the operations on m
graphs. We mentioned that the derivative of W(G;q) is gq-analog of W(G). By Theorem

[1,1.5], W'(G;1)= W(G) and we have:

W(G,oG,o..0G, )= (Hl ", J(k P S K]’i ", J( 1~ j(kmm n 2k—“):l

i=1 J=m—1+2

+ (lﬂ[ n’ }W(Gl) Jor m=>3

w(G vG,v..vG,)=2 Hni - Z:(—2)‘4‘711_[16,1_[11[2 where M ={1,2,...,m}

2 ¢+ AM icA =

(G ®G,®...0G,)=2 1= S ()" [k]]n}  where M ={12,...m}.

2 p#=AM ieA =
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