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ABSTRACT 

The topological index of a graph G is a numeric quantity related to G which is invariant under 

automorphisms of G. The vertex PI polynomial is defined as v u ve uvPI (G) n (e) n (e). 

Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = 
cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite 
class of fullerenes is constructed. The vertex PI, omega and Sadhana polynomials of this class 
of fullerenes are computed for the first time. 
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1. INTRODUCTION 

Fullerenes are molecules in the form of cage-like polyhedra, consisting solely of carbon 

atoms. Fullerenes Fn can be drawn for n = 20 and for all even n  24. They have n carbon 

atoms, 3n/2 bonds, 12 pentagonal and n/2-10 hexagonal faces. The most important member 

of the family of fullerenes is C60 [1,2]. 

Let  be the class of finite graphs. A topological index is a function Top from  into 

real numbers with this property that Top(G) = Top(H), if G and H are isomorphic.  

Let G = (V,E) be a connected bipartite graph with the vertex set V = V(G) and the 

edge set E = E(G), without loops and multiple edges. The number of vertices of G whose 

distance to the vertex u is smaller than the distance to the vertex v is denoted by nu(e). 

Analogously, nv(e) is the number of vertices of G whose distance to the vertex v is smaller 

than u. The vertex PI index is a topological index which is introduced in [3]. It is defined as 

the sum of [nu(e) + nv(e)], over all edges of a graph G. Let G be an arbitrary graph. Two 

edges e = uv and f = xy of G are called codistant (briefly: e co f ) if they obey the 
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topologically parallel edges relation. For some edges of a connected graph G there are the 

following relations satisfied [4,5]: 
ecoe  

e co f f co e  

hcoehcoffcoe ,  

though the last relation is not always valid.  

Set C(e):= {f  E(G) | f co e}. If the relation “co” is transitive on C(e) then C(e) is 

called an orthogonal cut “oc” of the graph G. The graph G is called co-graph if and only if 

the edge set E(G) is the union of disjoint orthogonal cuts.  

Let m(G,c) be the number of qoc strips of length c (i.e., the number of cut-off 

edges) in the graph G, for the sake of simplicity, m(G,c) will hereafter be written as m. 

Three counting polynomials have been defined [6-8] on the ground of qoc strips: 

c
c(G, x) m x   , 

c
c(G, x) m c x     and 

e c
c(G, x) m c x .     (G, x)  

and (G, x) polynomials count equidistant edges in G while (G, x) , non-equidistant 

edges. In a counting polynomial, the first derivative (in x=1) defines the type of property 
which is counted; for the three polynomials they are: 
 

c(G,1) m.c E(G)   , 
2

c(G,1) m.c    and c(G,1) m.c.(e c)   . 

 

If G is bipartite, then a qoc starts and ends out of G and so (G, 1) = r /2, in which r 

is the number of edges in out of G. 

The Sadhana index Sd(G) for counting qoc strips in G was defined by Khadikar et. 

al. [9,10] as cSd(G) m(G,c)(|E(G)| c)  , where m(G,c) is the number of strips of length c. 

We now define the Sadhana polynomial of a graph G as 
|E| c

cSd(G,x) m(G,c) x .   By 

definition of Omega polynomial, one can obtain the Sadhana polynomial by replacing xc 

with x|E|-c in omega polynomial. Then the Sadhana index will be the first derivative of 

Sd(G, x) evaluated at x = 1. Herein, our notation is standard and taken from the standard 

book of graph theory [11-17].  
 

Example 1. Let Cn denotes the cycle of length n.  
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Example 2. Suppose Kn denotes the complete graph on n vertices. Then we have: 
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Example 3. Let Tn be a tree on n vertices. We know that | ( ) | 1nE T n  . So, 

2( , ) ( , ) ( 1) , ( , ) ( , ) ( 1) .n
n n n nT x T x n x Sd T x T x n x           

 

2. MAIN RESULTS AND DISCUSSION 

The aim of this section is to compute the counting polynomials of equidistant (Omega, 

Sadhana and Theta polynomials) of an infinite family F12(2n+1) of fullerenes with 12(2n+1) 

carbon atoms and 36n+18 bonds (the graph F12(2n+1), Figure 1 is n = 4).  
 

Theorem 4. The omega polynomial of fullerene graph F12(2n+1) for n ≥ 2 is as follows: 

3 2 -2 -1 2 4
12(2n+1)Ω(F , ) 12 12 6 3n n nx x x x x     . 

 

Proof. By figure 1, there are four distinct cases of qoc strips. We denote the corresponding 

edges by f1, f2, f3 and f4. By the table 1 proof is completed. 

 

Edge #Co distance Number of edges 

f1 3 12 

f2 2n-2 12 

f3 2n+4 3 

f4 n-1 6 

 

Table 1. The Number of Equidistant Edges. 

 
Corollary 5. The Sadhana polynomial of fullerene graph F12(2n+1) is as follows: 

36n 15 34n 20 35n 19 34n 14
12(2n+1)Sd(F , x) 12x 12x 6x 3x .        

 
Now, we are ready to compute the vertex PI polynomial of fullerene graph F12(2n+1). 

It is well-known fact that an acyclic graph T does not have cycles and so nu(e|G) + nv(e|G) 

= |V(T)|. Thus PIv(T) = |V(T)|.|E(T)|. Since a fullerene graph F has 12 pentagonal faces, 

PIv(F) < |V(F)|.|E(F)|. Let G be a connected graph. The PIv polynomials of G are defined as 

x)(G;PIv  u vn (e|G) n (e|G)
e uv E(G) x 
  .Obviously '

v vPI (G,1) PI (G)  and PIv(G,1) = 



108                                                                                                                      MODJTABA GHORBANI 
 

 

|E(G)|. Define N(e) = |V|  (nu(e) + nv(e)). Then PIv(G) = 

   uveuve )e(N|E||V|)]e(N|V[|  and we have: 

 

u vn (e) n (e) |V(G)| N(e)
e uv E(G) e uv E(G)v

|V(G)| N(e)
e uv E(G)

PI (G, x) x x

x x .

 
   


 

  

 
 

 

f1

f3

f4

f2

 

Figure1.The graph of fullerene F12(2n+1) for n = 4. 

 

Example 6. Suppose F30 denotes the fullerene graph on 30 vertices, see Figure 2. Then 

PIv(F30 , x) = 10x20 + 10x22 + 20x26 + 5x30 and so PIv(F30) = 1090.  

 

 

Figure 2. The Fullerene Graph F30. 
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Theorem 7. The vertex PI polynomial of fullerene graph F12(2n+1) for n ≥ 2 is as follows: 
24n-64 24n-44 24n-12 24n-4 24n-2 24n

v 12(2n 1)

24n 6 24n 8 24n 10 24n 12

PI (F , x)  24x 12x 12x 6(n - 3)x 24x 24x

24x 24x 24x 6(5n - 22)x .



   

     

   

 

 

Proof. From Figures 3, one can see that there are ten types of edges of fullerene graph 

F12(2n+1). We denote the corresponding edges by e1, e2, … ,e10. By table 2 the proof is 

completed. 

 

Edge Number of vertex which are codistance from two ends of edges Num 

e1 0 6(5n-22) 
e2 2 12 
e3 4 12 
e4 6 24 
e5 12 24 
e6 14 24 
e7 16 6(n-3) 
e8 24 12 
e9 56 12 
e10 76 24 

 

Table 2. Computing N(e) for Different Edges. 
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Figure 3. Types of Edges of Fullerene Graph F12(2n+1). 
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