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ABSTRACT 

The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological index which reflects 
certain structural features of organic molecules. The PI index of a graph G is the sum of all 
edges uv of G of the number of edges which are not equidistant from the vertices u and v. In 
this paper we obtain the second and third extremals of catacondensed hexagonal systems with 
respect to the PI index. 
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1. INTRODUCTION 

 A graph G consists of a set of vertices V(G) and a set of edges E(G). If the vertices 
)(, GVvu ∈  are connected by an edge e then we write e=uv. In chemical graphs, each 

vertex represents an atom of the molecule, and covalent bonds between atoms are 
represented by edge between the corresponding vertices. This shape derived from a 
chemical compound is often called its molecular graph. Molecular structure descriptors, 
frequently called topological indices, are used in theoretical chemistry for the design of 
chemical compounds with given physico-chemical properties or given pharmacologic and 
biological activities. Here, we consider a topological index named the Padmakar-Ivan 
index, see [1-6].  

For an edge e = uv of a graph G set 
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)},(),(|)({)(1 vxduxdGVxeG GG <∈=  

)},(),(|)({)(2 uxdvxdGVxeG GG <∈= , 
 

 It is easy to see, G1(e) is the set of vertices closer to u than to v while G2(e) consists 
of those vertices that are closer to v. Note that the roles of G1(e) and G2(e) would be 
interchanged if the edge e would be considered as e = vu. Since these two sets will always 
be considered in pairs, this imprecision in the definition will cause no problem. Observe 
that if G is bipartite then for any edge e of G, G1(e) and G2(e) form a partition of V(G). If G 
is bipartite graph, then m1(e|G) (resp., m2(e|G)) be the number of edges in the subgraph of 
G induced by G1(e) (resp.,G2(e)). Again, the roles m1(e|G) and m2(|G) could be 
interchanged, but since only the sum m1(e|G) + m2(e|G) will be considered, such a 
definition suffices. Now, the PI index of G is defined as  

[ ]∑ ∈
+=

)( 21 )|()|()(
GEe

GemGemGPI . 

 A hexagonal system is a connected geometric figure obtained by arranging 
congruent regular hexagons in a plane, so that two hexagons are either disjoint or have a 
common edge. This figure divides the plane into one infinite external region and a number 
of finite internal All internal region must be regular hexagons. Hexagonal systems are 
considerable importance in theoretical chemistry because they are the natural graph 
representation of benzenoid hydrocarbon. A vertex of a hexagonal system belongs to at 
most three hexagons. A vertex shared by three hexagons is called an internal vertex; the 
number of internal vertices of a hexagonal system is denoted by ni. A hexagonal system is 
called catacondensed if ni=0, otherwise (ni>0), it is called precondensed.  
 
Lemma 1 (See [7]). For any hexagonal system with n vertices, m edges and h hexagons and 
ni internal vertices, 

n=4h+2-ni and m=5h+1-ni. 
 

It is easy to see that all catacondensed hexagonal systems with h hexagons have 
4h+1 vertices and 5h+1 edges. In a series of papers [8-14], Khadikar and his co-authors 

defined and then computed the PI index of some chemical graphs. In this paper we use the 
method that is established by Klavžar to obtain the second and third extremals of 
catacondensed hexagonal systems with respect to PI index [15]. Our notation is standard 
and mainly taken from [16, 17]. 

 
2. MAIN RESULT AND DISCUSSION  

In what follows a method given by Klavžar is described. Using this method, it is possible to 
obtain extremals of catacondensed hexagonal systems with respect to the PI index. Let G be 
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a graph, then we say that a partition E1,…, Ek of E(G) is a PI-partition of G if for any i, 
ki ≤≤1 , and for any iEfe ∈, , we have G1(e) = G1(f ) and G2(e) = G2(f ).  

 
Lemma 2 (See [17]). Let E1,…, Ek be a PI-partition of a bipartite graph G. Then 

2

1

2)()( ∑=
−=

k

i iEGEGPI . 
 

Since hexagonal systems are bipartite, then by Lemmas 1 and 2, we can see that if X 

is a catacondensed hexagonal system with h hexagons, 
2

1
2)15()( ∑=
−+=

k

i iEhXPI , 

where E1,…, Ek  is a PI-partition of X. One can see that in a hexagonal system with h 
hexagons and PI-partition E1, …, Ek  for each i, ki ≤≤1 , 1||2 +≤≤ hEi .  
 We recall some concept about hexagonal systems that will be used in the paper. A 
hexagon H of a catacondensed hexagonal system has either one, two or three neighboring 
hexagons. If H has one neighboring hexagon, it is called terminal, and if it has three 
neighboring hexagons it is called branched. A hexagon H adjacent to exactly two other 
hexagons posses two vertices of degree 2. If these two vertices are adjacent, H is angularly 
connected. Each branched and angularly connected hexagons in a catacondensed hexagonal 
system is said to be kink, in Figure 1 the kinks are marked by K.  
 

KK

 
 

Figure 1. The kinks. 
 

 The linear chain Lh with h hexagons is the catacondensed system without kinks, see 
Figure 2. A segment is maximal linear chain in catacondensed system. The length of a 
segment is the number of its hexagons. 
 

1 2 h-1 h
  

 
Figure 2. A Linear Chain Lh. 

 

 A zig-zag chain Zh with h hexagons is the catacondensed hexagonal system with h-2 
kinks in another word the length of its segments is equal to 1 or 2, see Figure 3. 
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Figure 3. The Zig-Zag chains Z8 and Z7. 

 
Let E1, …, Ek be a PI-partition of a catacondensed hexagonal system X. Then one 

can see that for each Ei, ,1 ki ≤≤  there is )(XEei ∈  such that }.|||)({ ii eeXEeE ∈=  In 
Figure 4, PI-partition of linear chain and zig-zag chain are marked by dashed lines. 

 

 
 

Figure 4. PI-Partitions of L6 and Z6. 
 

Let E1, … , Ek be a PI-partition of catacondensed hexagonal system X, with h 

hexagons, it is easy to see that k = 2h + 1 and 15
1

+=∑ =
hEk

i i . We can say that X is a 

linear chain Lh if there exists ki ≤≤ '1 1' += hEi  and for ki ≤≤1 , 'ii ≠ , 2=iE . Also X is 

a zigzag chain if 21 orEi =  for ki ≤≤1 . 

A transformation of type 1 for a cotacondensed hexagonal system is defined as 
follows: Let X be a cotacondensed hexagonal system with h hexagons. We choose a 
segment with maximum length containing at least one terminal hexagon. Suppose that the 
length of this segment is t, denoted by Lt. Remove a terminal hexagon of X (which is not in 
Lt ) and add it to Lt, for obtaining Lt+1. This new hexagonal system is denoted by X1. In 
Figure 5, this process is applied on X (four times) to obtain X2, X3

 and X4. Clearly, if X is a 
linear chain then X1 is equal to X. 
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Figure 5. Four transformations of type 1 of X. 
 
Theorem 3. Let X be a catacondensed hexagonal system with h hexagons such that hLX ≠

and let X1 be a hexagonal system which is instructed by a transformation of type 1. Then, 
)()( 1 XPIXPI < .  

 
Proof. Let E1, …, Ek and F1,…, Fk  be PI- partitions of X and X1, respectively. By Lemma 

2, 
2

1
2)15()( ∑=
−+=

k

i iEhXPI  and 
2

1
2

1 )15()( ∑ =
−+=

k

j jFhXPI . Let S be a segment of 

maximum length t with at least one terminal hexagon. Then there exists kjjii ≤≤ ''','','1  

such that 1' += tEi  , rEi ='' , 2' += tFj  and 1'' −= rFj , tr ≤ , and, for each kji ≤≤ ,1  

such that, '',','',' jjjiii ≠≠ ji FE = . Therefore  

222

'','
1

2 )1()15()( rtEhXPI k

iii
i i −+−−+= ∑
≠
=  

and 
222

'','
1

2
1 )1()2()15()( −−+−−+= ∑

≠
= rtFhXPI k

jjj
j j . 

Since =∑
≠
=

2

'','
1

k

iii
i iE

2

'','
1∑
≠
=

k

jjj
j jF  and <++ 22)1( rt 22 )1()2( −++ rt , one can see that 

)()( 1 XPIXPI < .                                                                                                                   ■ 
 
Corollary 4. Let X be a catacondensed hexagonal system with h hexagons and hLX ≠ . 

Then )()( XPILPI h < . 
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Proof. Let X1 be a instructed hexagonal system by transformation of type 1, if hLX =1  then 

by Theorem 3, )()()( 1 XPIXPILPI h <= and the proof is completed. Otherwise, we 

continue this process and obtain X2 from X1, by similar way if hLX =2 , use Theorem 3. 

Otherwise continue the process. Finally there exists positive integer t such that ht LX =  and 
this completes the proof.                                                                                                         ■ 
 
 A semi linear chain '

hL with h hexagons is the catacondensed system such that it has 
a segment of length h-1 and a segment of length 2 and remained segment have length 1, see 
Figure 5. In other word, in PI-partition E1, …, Ek of '

hL , there exist kii ≤≤ '','1 , such that 

hEi ='  , 3'' =iE and for each ki ≤≤ ,1 , '',' iii ≠ , 2=iE . 

 

1 2

h

h-1h-2

 
 

Figure 5. A Semi Linear Chain L’
h. 

 
Corollary 5. Let X be a catacondensed hexagonal system with h hexagons and hh LLX ',≠ . 

Then )()'( XPILPI h < . 
 
Proof. The proof is straight forward by Theorem 3 and Corollary 4.                                    ■ 
 

Define the hexagonal system hL '' with h hexagons to be the catacondensed system 
containing one segment with length h-2, two segments of length 2, and remaining segments 
have length 1, see Figure 6. In other words, in PI-partition E1,…, Ek of hL '' , there exist 

kiii ≤≤ ''','','1 , such that 1' −= hEi  , 3|| ''''' == ii EE  and for each ki ≤≤1 , iiii ′′′≠ ,",' , 

2=iE . 

 

1 2

h-1

h-2

h
 

Figure 6. The Hexagonal System "
hL . 
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Corollary 6. Let X be a catacondensed hexagonal system with h hexagons and 

hhh LLLX '',',≠ . Then )()( " XPILPI h ≤ . 
 
Proof. The proof is similar to by Theorem 3 and Corollary 4.                                             ■ 
 
 We now define a transformation of type 2 for hexagonal systems. To do this, we 
assume that X is a catacondensed hexagonal system with h hexagons. Suppose L is a 
segment of maximum length which contains at least one terminal hexagon and Z is a zig-
zag subgraph of X with the maximum number of hexagons. We omit a terminal hexagon of 
L and add a hexagon to Z to find a graph Z1 such that Z1 is still a zig-zag. The graph 
constructed from this transformation is denoted by X1. It is obvious that if X is a zig-zag 
chain then X1= X. In Figure 7, this process is explained alternatively to construct graphs X2, 
X3 and X4 from X.  
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Figure 7. The Action of Transformations of Type 2 on X. 
 

The following theorem and its corollaries are concluded by similar argument as 

Theorem 3 and its corollaries. 
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Theorem 6. Let X be a catacondensed hexagonal system with h hexagons and hZX ≠  and 
X1 be a hexagonal system which is instructed by a transformation of type 2. Then, 

)()( 1XPIXPI < . 
 
Proof. The proof is similar to Theorem 3 and so omitted.                                                     ■ 
 
Corollary 7. Let X be a catacondensed hexagonal system with h hexagons and hZX ≠ . 

Then )()( hZPIXPI < . 

 Suppose h is an odd positive integer. A semi zig-zag chain '
hZ  with h hexagons is a 

catacondensed system with exactly one segment of length 3 other segments have length 1 
or 2. For even h, a semi zig-zag chain is assumed to be a catacondensed system with 
exactly two segments of length 3 and other segments have length 1 or 2. We denote the 
family of semi zig-zag chains, by hẐ . 
 
Corollary 8. Let hZX ≠  be a catacondensed hexagonal system containing h hexagons. 

Then )()( '
hZPIXPI < , with equality if and only if X is an element of hẐ . 

 
 
REFERENCES 

1.  P. V. Khadikar, Nat. Acad. Sci. Lett. 23 (2000) 113−118. 
2.  P. V. Khadikar, S. Karmarkar, J. Chem. Inf. Comput. Sci. 41 (2001) 934–949. 

 A. R. Ashrafi and F. Rezaei, MATCH Commun. Math. Comput. Chem. 57( 2007) 
243−250.  

3. A. R. Ashrafi, M. Ghorbani, M. Jalali, J. Theoret. Comput. Chem. 7(2008) 221−
231. 

A. R. Ashrafi and A. Loghman, , MATCH Commun. Math. Comput. Chem. 
55(2006) 447−452. 

4. H. Deng, MATCH Commun. Math. Comput. Chem. 55 (2006) 461−476. 
5.  I. Gutman, The teaching of Mathematics, 10 (2007) 1−10. 
6.  P.V. Khadikar, S. Karmarkar, V.K. Agrawal, Nat. Acad. Sci. Lett . 23 (2000) 124. 
7.  P.V. Khadikar, S. Karmarkar, V.K. Agrawal, Nat. Acad. Sci. Lett. 23 (2000) 165−

170. 



PI Index of Hexagonal Systems                                                                                          103 

 

8.  P.V. Khadikar, P.P. Kale, N.V. Deshpande, S. Karmarkar, V.K. Agrawal, J. Math.   
Chem. 29 (2001) 143−150. 

9.  P.V. Khadikar, S. Karmarkar, R.G. Varma, Acta Chim. Slov. 49 ( 2002) 755−771. 
10.  P.V. Khadikar, V.K. Agrawal S. Karmarkar, Bioorg. Med. Chem. 10 ( 2002) 

3499−3507. 
P.V. Khadikar, S. Karmarkar, S. Singh, A. Shrivastava, Bioorg. Med. Chem. 10 ( 
2002) 3163−3170. 

11. P.V. Khadikar, A. Phadnis, A. Shrivastava, Bioorg. Med. Chem. 10 ( 2002) 1181−
1188. 

12. S. Klavžar, MATCH Commun. Math. Comput. Chem. 57 (2007) 573-586. 
 P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms; Cambridge 
University Press: Cambridge, 1994. 

13. N. Trinajstić, Chemical Graph Theory, CRC Press: Boca Raton, FL. 1992. 
 


