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ABSTRACT 

A counting polynomial C(G , x) is a sequence description of a topological property so that 
the exponents express the extent of its partitions while the coefficients are related to the 
occurrence of these partitions. Basic definitions and properties of the Omega polynomial 

),( xG  and the Sadhana polynomial ),( xGSd  are presented. These polynomials for 

some infinite classes of fullerenes and nanotubes are also computed. The results of this 
paper are arranged according to the main Theorems of [9 43].  
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1. INTRODUCTION  

Mathematical calculations are absolutely necessary to explore important concepts in 
chemistry. Mathematical chemistry is a branch of theoretical chemistry for discussion 
and prediction of the molecular structure using mathematical methods without 
necessarily referring to quantum mechanics. Chemical graph theory is an important tool 
for studying molecular structures. This theory had an important effect on the 
development of the chemical sciences. 

A graph can be described by: a connection table, a sequence of numbers, a 
derived number (called sometimes a topological index), a matrix, or a polynomial [1]. 

 A finite sequence of some graph-theoretical categories/properties, such as the 
distance degree sequence or the sequence of the number of k-independent edge sets, can 
be described by so-called counting polynomials: 
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 
k

kxkGpxGP ),(),(      (1) 

where p(G,k) is the frequency of occurrence of the property partitions of G, of length k, 
and x is simply a parameter to hold k. 

Counting polynomials were introduced, in the Mathematical Chemistry 
literature, by Hosoya with his Z-counting (independent edge sets) and the distance 
degree polynomials, where initially called Wiener and later Hosoya polynomials [2]. 
Their roots and coefficients are used for the characterization of topological nature of 
hydrocarbons. 

Hosoya proposed the sextet polynomial [3,4]for counting the resonant rings in a 
benzenoid molecule. The sextet polynomial is important in connection to the Clar 
aromatic sextets [5,6] expected to stabilize the aromatic molecules.  

The independence polynomial [7, 8] counts the number of distinct k-element 
independent vertex sets of G. Other related graph polynomials are the king, color and 
star or clique polynomials [9]. 

Vertex contributions to a polynomial P(G,x), based on distance counting, can be 
written as: 

 
k

kxkipxiP ),()2/1(),(     (2) 

Where p(i,k) is the contribution of vertex i to the partition p(G,k) of the global 
molecular property P=P(G). Note that p(i,k)’s are just the entries in LM or SM, more 
exactly 1/2 the value because each vertex contribution is counted twice [10]. 

Usually, the vertex contribution varies from one atom to another, so that the 
polynomial for the whole graph is obtained by summing all vertex contributions: 

 i
xiPxGP ),(),(      (3) 

In a vertex transitive graph, the vertex contribution is simply multiplied by N: 
),(),( xiPNxGP        (4) 

Hence, P(G) is easily obtained as the polynomial value in x=1: 

1|),()(  xxGPGP       (5) 

A distanceextended property D_P(G) can be calculated by the first derivative 

of the polynomial in x = 1 [11  15]: 

1
1 |),(),()(_ 
  xk

kxkGpkxGPGPD   (6) 

In [16], the authors produced a treatment apparently independent of Hosoya's. 
Perhaps the most interesting property of  H(G,x) is the first derivative, evaluated at x = 
1, which equals the Wiener index: ( ,1) ( )H G W G  . Ashrafi [17]continued the line of 

the mentioned paper of Sagan et al. to introduce the notion of PI polynomial of a 
molecular graph G as: 

( , )
( , ) ( )

( , ) N u v
u v e E G

PI G x x
 

      (7) 

where ( , ) ( | ) ( | )eu evN u v n e G n e G   and ( | )eun e G is the number of edges lying closer 

to u than v (i.e., the nonequidistant edges) while the number of edges equidistant to 
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the edge e = uv E(G) is given by: ( ) ( ) ( , )N e E G N u v  , where E(G) denotes the set 

of all edges of the graph G. In [17] the authors have shown that this new polynomial has 
the same basic properties as the Wiener polynomial. Thus, its first derivative gives the 
PI index, which can also be calculated by subtracting the total number of equidistant 
edges in G from the square of the edge set cardinality:  

 2
( ) ( ,1) ( )

e
PI G PI G E N e         (8) 

See also [18  20] for more details about PI index. Here, our notations are standard and 

taken from [21  23]. The basic definitions and properties of the Omega polynomial 
),( xG  are presented in the second section. In the third section the Omega polynomial 

of some wellknown graphs are computed.  
 

2. MAIN RESULTS AND DISCUSSION 

We now recall some algebraic definitions that will be used in the paper. Let G be a 
simple molecular graph without directed and multiple edges and without loops, the 
vertex and edge-sets of which are represented by V(G) and E(G), respectively. 
Throughout this paper, graph means simple connected graph. The vertex and edge sets 

of a graph G are denoted by V(G) and E(G), respectively. If x, yV(G) then the distance 
d(x, y) between x and y is defined as the length of a minimum path connecting x and y. 
 

2.1 OMEGA POLYNOMIAL 

The Omega polynomial is a counting polynomial introduced by M. V. Diudea. In recent 
years, several papers on methods for computing Omega polynomials of molecular 
graphs have been published [24 – 43]. 

Let G be a connected bipartite graph with the vertex set ( )V V G  and edge set 

( )E E G , without loops. Two edges e = ab and f = xy of G are called co-distant 

(briefly: e co f) if for k = 0,1,2,… there exist the relations: d(a,x) = d(b,y) = k and d(a,y) 
= d(b,x) = k+1 or vice versa. For some edges of a connected graph G there are the 
following relations satisfied: 

e co f          (9) 

  e co ff co e       (10) 

  e co f & f co ge co g         (11) 
though, the relation (11) is not always valid.  

Let C(e):= { ' ( )e E G ; e’ co e } denote the set of all edges of G which are co-

distant to the edge e. If all the elements of C(e) satisfy the relations (911) then C(e) is 
called an orthogonal cut “oc” of the graph G. The graph G is called co-graph if and 

only if the edge set E(G) is the union of disjoint orthogonal cuts: 1 2 ... kC C C E   

and i jC C Ø for ji  , kji ,...,2,1,  .  

We now assume that G has a plane representation F. If S is the set of all faces 
forming the interior regions then every edge appears in at most two members of S. 
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Suppose T denotes the outside edges of G. Start with an edge e of G. If there is not an 
edge e1 different from e with the property that e co e1 and {e,e1} lie in the same face of 
G then we define H= {e1} and choose another edge f of G. Otherwise, there exists the 
edge e1 such that e co e1. Continue this process by e1 to construct the sequence e co e1 

co e2 co … co er. If e  T then define H = {e, e1, e2, …,er}. If not, there exists an edge f1 
of G different from e1 such that f1 co e and {e,f1} lie in the same face of G. By this 
algorithm a sequence H= {ft, …, f1, e, e1, e2, …, er} is constructed. H is called a 

quasiorthogonal cut or a qoc strip. It is an easy fact that a qoc strip is not necessarily 
transitive. In the case that G is bipartite, then every member of S have an even number 

of edges and so ft, er T. Notice that a qoc strip starts and ends either out of G (at an 
edge with endpoints of degree lower than 3, if G is an open lattice,) or in the same 
starting polygon (if G is a closed lattice). Any oc strip is a qoc strip but the reverse is 
not always true. 

Suppose E1, E2, …,Er are qoc strips of a connected planar bipartite graph G. We 

claim that X = {E1, E2, …,Er} is a partition of E = E(G). To do this we assume that e  
E is an arbitrary edge of G. Using a similar argument as those given above one can find 
a sequence ft co ft-1 co … co f1 co e co e1 … co er. Therefore there exists j, 1 ≤ j ≤ r, such 

that {ft, …, f1, e, e1, …, er}  Ej. This implies that e Ej and so E = E1 E2 … Er. To 

complete our claim, we must prove EiEj = , for 1 ≤ i j ≤ r. Suppose Ei = {e1,e2, …, 

en}, Ej = {f1,f2,…,fm} and e Ei  Ej. Then there are r, s, 1 ≤ r ≤ n and 1 ≤ s ≤ m such 
that e = er = fs. But every edge appears in at most two members of S, so by using an 
inductive argument Ei = Ej. Therefore, X is a partition of E.  

The Omega ),( xGΩ polynomial for counting qoc strips in G is defined as: 

( , ) ( , ) cΩ G x m G c xc        (12) 

with m(G,c) being the number of strips of length c. The summation runs up to the 
maximum length of qoc strips in G.  

If G is bipartite then a qoc starts and ends out of G and so ,2/)1,( rGΩ  in 

which r is the number of edges in out of G. On the other hand, one can easily seen that 

( ,1) ( )
c

G m c e E G     . Two single number descriptors are derived from

),( xGΩ  as: 

1
2 )()()(  xΩΩΩGCI      (13) 

1
/1)),(()),(/1()(  xd

dd
Ω xGΩxGΩGI     (14) 

In case of I , summation runs over all possible derivatives d in the 

corresponding polynomial. When one or more edges do not belong to a counted strip, 
such edges are added as “strips of length 1”. 

It is easily seen that, for a single qoc, one calculates the polynomial: 

( , ) cG x x  and 2( ) ( ( 1)) 0CI G c c c c     . There exist graphs for which CI equals 

PI. In fact, the two indices CI and PI will show identical values if the edge equidistance 
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evaluation in the graph involves only the locally parallel edges. This is occurred for 
example in partial cubes. In this case, we have: 

2 2 2( ) ( 1) ( )( ) [ ]
c c c c

CI G m c m c m c c e m c PI G               . 

This counting polynomial is useful in topological description of benzenoid, 
structures as well as in counting some single number descriptors, i.e., topological 
indices. The qoc strips could give account for the helicity of polyhex nanotubes and 
nanotori. The Omega 1.1 software program includes the qoc strips procedure. 

In the end of this section a simple counterexample for equations (9-11) is given 
in Figure 1. In the graph G1; {a} and {c} are oc strips; {b} and {d} does not have all 
elements co-distant to each other, so that {b} and {d} are qoc strips. In the graph G2; 
{a} and {b} and {c} are oc strips; {f} and {c} are equidistant but {f} and {c1 or c3} do 
not obey the symmetry relation (8) (and do not belong to one face) thus {f} does not 

belong to the strip {c}. Therefore, 642
1 2),( xxxxGΩ  and 32

2 25),( xxxxGΩ 

. 
 

 

Figure 1. Two Graphs G1 (left) and G2 (right). 
 
 

2.2 EXAMPLES 

In this section the Omega polynomial of some well-known graphs are computed. A 
general formula for computing Omega polynomial of the graph product is presented by 
which, it is possible to compute the Omega polynomials of nanotubes and nanotori 
covered by C4. We begin by some well-known graphs. 
 

Example 1.Suppose Tn, Cn and Kn denote the an arbitrary acyclic graph, cycle and 
complete graph on n vertices, respectively. Then by simple calculations, one can see 
that  

( ) |
( , ) ,

|

n n

n
n

n
x x n

K x

nx n






 
  

 

1
2 2

1
2

2
2

2

|
( , )

|
n

n
x n

C x
nx n


  
 

2 2
2

2
and(T,x) = (n1)x.  

The Cartesian product G  H of graphs G and H is a graph such that V(G  H) = 

V(G)  V(H), and any two vertices (a,b) and (u,v) are adjacent in G  H if and only if 



6                                                                                                                  M. GHORBANI 

 

either a = u and b is adjacent with v, or b = v and a is adjacent with u. The following 
properties of the Cartesian product of graphs are crucial: 

(a) |V (G × H)| = |V(G)| |V(H)| and |E(G × H)| = |E(G)| |V(H)| + |V(G)| |E(H)|; 

(b) G × H is connected if and only if G and H are connected; 
(c) If (a, x) and (b, y) are vertices of G × H then dG×H((a, x), (b, y)) = dG(a, b) + 

dH(x,y); 
(d) The Cartesian product is associative. 

 
Theorem 2. Let G and H be bipartite connected co-graphs. Then 

1 2

1 2

| V (H ) | | V (G ) | 
1 2( , ) ( , ).  ( , ). .c c

c c
Ω G H x m G c x m H c x     

Proof. Suppose that for an edge e = uv of an arbitrary graph L, NL(e) = |E| − (nu(e) + 
nv(e)). Then by definition,  

G×H

|V (G)| N ( f )    for  a = b and x y = f  E(H )
N  ((a, x), (b, y)) = 

|V (H)| N ( g )   for  x = y and ab = g  E(G).


 

 

By above paragraph and definition of the Omega polynomial, we have: 
 

1 2

1 2
1 2( , ) ( , ). ( , ). ( , ).| V (H ) | c | V (G ) | cc

c c c
Ω G H x m G H c x m G c x  m H c x        

which completes the proof. 
 

Corollary 3. Let 1 2 nG  , G  , · · · , G  be bipartite connected co-graphs. Then we have: 

j
1

| V (G  ) | 

1 2 n
1

(G  × G  × · · · × G  , ) ( , ).

n

i
j
j i

i

c
n

i ic
i

Ω x m G c x






 . 

Proof. Use induction on n. By Theorem 2.2, the result is valid for n = 2. Let n ≥ 3 and 
assume the theorem holds for n - 1. Set G = G1 × · · · × Gn-1. Then we have 

| V (  ) | | V (G ) | ( , ) ( , ).  ( , ).n n

n

G c c
n n nc c

Ω G G x m G c x m G c x     

                    =
11

1

( , ). ( , ).

n

j i
j
j i n

i n

| V (G  ) | c
n

| V (G ) | c
i i n nc c

i

m G c x m G c x








   

                    =
1

1

( , ).

n

j i
j
j i

i

| V (G  ) | c
n

i ic
i

m G c x







 .  

 
Example 4. In this example the Omega polynomial of nanotubes and nanotori covered 
by C4 are calculated. By definitions of Cartesian product of graphs and Omega 
polynomial, one can easily prove: 

1 2

1 2

| V (H ) | | V (G ) | 
1 2( , ) ( , )  ( , )c c

c c
Ω G H x m G c x m H c x      . (15) 
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Suppose R and S denote a C4tube and C4torus, respectively. Then by definition 

R  Pn  Cm and S  Ck  Cm. Apply Theorem 2 to deduce that 

( , ) ( 1) ( 1)m n
n mP P x n x m x      . On the other hand, we have: 

 

2( 1)       2|m
2( , )

( 1)         2|m

m n

n m
m n

m
n x x

P C x
n x mx

     
  

 , 

2

2

2 2

           2|m , 2|n

         2|m , 2|n
2

( , ) n
         2|m , 2|n

2
n

       2|m , 2|n
2 2

m n

m n

n m m n

m n

nx mx

m
nx x

C C x
x mx

m
x x

 

    



 

. 

 
Example 5.Consider the molecular graph of a nanocones G = CNC4[n], Figure 2. This 
graph has exactly 4(n + 1)2 vertices. From Figure 2, one can see that there are m + 1 
type of edges of G. These are I1, I2,… and Im+1. In Table 1, for each type the number of 
equidistant edges of Gis computed. By this calculation, we can see that  

Ω(G, x) = 2x2m+2 + 4(x2m+1 + x2m +…+ xm+2)  

            = 2x2m+2 + 4(x2m+2xm+2)/(x1).  
 

Table 1.The Number of Parallel Edges. 
 

Edges 
Number of  

Parallel Edges 
No 

Type I1 Edges m+2 4 
Type I2 Edges m+3 4 
Type I3 Edges m+4 4 

  4 

Type Im+1 Edges 2m+2 2 

 
In the end of this section, the Omega polynomials of TWHH[p,q](R) nanotubes 

and nanotori are computed, Figures 35. The molecular graphs of these compounds are 
denoted by G and H, respectively. From Figures 3-5, one can see that there are two 
different cases for qoc strips. Suppose e1 and e2 are representatives of the different 
cases. In the molecular graph G, |C(e1)| = 2p and |C(e2)| = 2q+1. On the other hand, 
there are q and 2p similar edges for each of edges e1 and e2, respectively. This implies 

that Ω( , ) 2p 2q+1G x qx  + 2px . For the graph H, |C(e1)| = 2p and |C(e2)| = 2pq. On the 
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other hand, there are q and 2 similar edges for the edges e1, e2, respectively. Therefore, 

Ω( , ) 2p 2pqH x qx  + 2x .  

 

Figure 2. The Molecular graph of carbon nanocones CNC4[n]. 

 

 
 

Figure 3.The qoc strips of the 2dimensional graph of a TWHH[p,q](R) nanotube. 

1 2 3 4 . . . . p

1

2

3

q

.

.

.

e1

e2 e3
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Figure 4.The qoc strips of the nanotube G. 

 1 2 3 4 . . . . p

1

2

3

q

.

.

.

e1

e2
 

 

Figure 5. The qoc strips of the nanotorus H. 
 

1 2 3 4 . . . . p

1

2

3

q

.

.

.

e1

e2
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2.3 OMEGA POLYNOMIAL OF FULLERENES 

The fullerene era was started in 1985 with the discovery of a stable C60 cluster and its 
interpretation as a cage structure with the familiar shape of a soccer ball, by Kroto and 
his co-authors [44,45]. The well-known fullerene, the C60 molecule, is a closed-cage 
carbon molecule with three-coordinate carbon atoms tiling the spherical or nearly 
spherical surface with a truncated icosahedral structure formed by 20 hexagonal and 12 
pentagonal rings. Let p, h, n and m be the number of pentagons, hexagons, carbon atoms 
and bonds between them, in a given fullerene F. Since each atom lies in exactly 3 faces 
and each edge lies in 2 faces, the number of atoms is n = (5p+6h)/3, the number of 
edges is m = (5p+6h)/2 = 3/2n and the number of faces is f = p + h. By the Euler’s 
formula n − m + f = 2, one can deduce that (5p+6h)/3 – (5p+6h)/2 + p + h = 2, and 
therefore p = 12, v = 2h + 20 and e = 3h + 30. This implies that such molecules made up 

entirely of n carbon atoms and having 12 pentagonal and (n/2  10) hexagonal faces, 

where n 22 is a natural number equal or greater than 20. 
In this section, the Omega polynomials of some infinite classes of fullerenes are 

investigated. Begin by small fullerenes C20 and C30 depicted in Figure 6. 
 

a b
 

Figure 6. (a) The fullerene graph C20  (b) The fullerene graph C30. 

 

Then by our method Ω(C20 , x) = 30x and Ω(C30 , x) = 20x + 10x2 + x5. We now compute 
the Omega of an infinite family of fullerene graphs with 40n + 6 vertices, Figure 7. 
 
Theorem 6. The Omega polynomial of fullerene graph G = C40n+6 is computed as 
follows: 
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2 2 1 4 1 4

4 3 2 2 4 4 4 1

2 2 1 4 4 2

2 2 2 2 4 1 4 2

2 2 2 1 2 4 3 8 6

( ) 4 4 4 2 5 |

( ) 2 8 2 2 5 | 1

( , ) ( ) 8 4 2 2 5 | 2

( ) 4 4 4 2 5 | 3

( ) 4 4 4 2 5 | 4

n n n n

n n n n

n n n n

n n n n

n n n n n

a x x x x x n

a x x x x x n

G x a x x x x x n

a x x x x x n

a x x x x x x n

 

   

 

   

   

    



    

      

     

      

, 

where 2 3 4 10( ) 9 4 2 (2 3)a x x x x x n x      . 

 

Proof. From Figure 7, one can see that there are ten distinct cases of ops strips in G. We 
denote the corresponding edges by e1, e2, …,e10. By using calculations given in Table 2 
and the Figure 8, the proof is completed.        

e1

e4

e5

e6

e7

e8

e9

e10

e2

e3

e11

 

Figure 7. The Graph of fullerene C40n+6, when n = 2. 
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Table 2. The number of Codistant edges of ei, 1≤ i ≤10. 

 

No. Number of Co-Distant Edges Type of Edges 

1 1 e1 

9 2 e2 

4 3 e3 

2 4 e4 

2n-3 10 e5 

2 

2 1 5
4 3 5 1
2 5 4 2
2 2 5 3

n n
n n
n n n
n n


  
  

 

|
|
| ,
|

 e6 

2
4
4






 
4 1 5 3
2 5 2
2 2 5 1 4

n n
n n n
n n n

 
 
   

|
| ,
| ,

 e7 

4
4
2






 
2 2 5 | 1, 3
2 1 5 | 2, 4
4 1 5 |

n n n
n n n
n n

  
   
 

 e8 

1
2
2
2







 

8 6 5 4
4 2 5 3
4 4 5 1
4 5 2

n n
n n
n n
n n n

 
  
  



|
|
|
| ,

 e9 

2 

4 1 5 3
4 1 5 1
4 2 5 2
4 3 5 4

n n n
n n
n n
n n

 
  
  

 

      | ,
      |
      |
      |

 e10 

2 

2 1 5
2 5 2 4
2 2 5 3

n n
n n n
n n


  
  

    |
      | ,

   |
 e11 
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Graph of fullerene C40n+6 Edges codistant to e1 Edges codistant to e2 

   

Edges codistant to e3 Edges codistant to e4 Edges codistant to e5 

   

Edges codistant to e6 Edges codistant to e7 Edges codistant to e8 

   

Edges codistant to e9 Edges codistant to e10 Edges codistant to e11 

 
Figure 8.The main cases of C40n+6 fullerenes regarding Codistant edges. 
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Figure 9. The fullerene graph Fn, n = 8. 

 

Next, we consider a class of fullerenes with exactly 10n vertices, Figure 9. From 

Figure 10, there are six distinct cases of qoc strips as follows: 

  

e1 e2 e3 

   

e4 e5 e6 

 
Figure 10. The qoc strips of edgese1, e2, …,e6 in Fn. 
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We denote the corresponding edges by e1, e2, …,e6. Then |C(e1)| = |C(e2)| = |C(e3)| 
= |C(e6)| = 1, |C(e4)| = 5 and |C(e5)| = n – 1. On the other hand there are five similar 
edges for each of edges e1, e2, e3 and e6, n – 2 edges similar to e4 and 10 edges similar to 
e5. Therefore,  

5 ( 1)( , ) 20 ( 2) 10 n
nF x x n x x         . 

In what follows, a new class of fullerenes with 10n carbon atoms are considered, 

see Figure 11. In Table 3, we lists the Omega polynomial of Fnfor n 9. 
 

Table 3. The Omega Polynomial of Fn for n  9. 

 

Fullerenes   Polynomials 
C20 30x 
 C30 20x+x5+10x2 
C40 20x+2x5+10x3 
C50 20x+3x5+10x4 
C60 20x+4x5+10x5 
C70 20x+5x5+10x6 
C80 20x+6x5+10x7 
C90 20x+7x5+10x8 

 

Theorem 7. Consider the fullerene graphs C10n, n ≥ 2. Then the Omega polynomial of 
C10n is computed as follows: 

3 -32

10
-3 3

3 -32 2

10 10 10 2 |
Ω( , ) ,

10 5 5 10 2 |

n
n

n
n n

n

x x x n
F x

x x x x n



 


   

 

Proof. To compute the Omega polynomial of C10n, it is enough to calculate C(e) for 

every e  E(G). In Tables 4 and 5, the number of co-distant edges of this fullerene, are 
computed. From calculations given in Tables 4, 5 and Figure 11, 12 the equation is 
obtained which completes the proof. 

 

Table 4.The Number of Co-Distant Edges, when 2|n. 

Type of Edges Number of Co-Distant Edges No  

e1 3 10 

e2 n/2 10 

e3 n  3 10 
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Table 5.The Number of Co-Distant Edges,when 2 | n . 

Type of Edges 
Number of Co-Distant 

Edges 
No 

e1 3 10 

e2 
3

2

n   5 

e3 
3

2

n   5 

e4 n  3 10 

 

e1

e4

e2

e3
 

Figure 11. The fullerene graph C10n (n is odd). 
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e1

e2

e3
 

Figure 12. The fullerene graph C10n (n is even). 

 

Theorem 8.Suppose G is the molecular graph of C24n fullerene. Then the Omega 

polynomial of G is 2 2 3 3( , ) 3 6 12 12 .n n nG x x x x x      

 
Proof. It is easy to see that there are four different type of edges, f1, f2, f3 and f4, Figure 

13. The number of edges codistant to f1, f2, f3 and f4 are 2n, 2n-3, 3 and n, respectively. 
On the other hand, there are 3 edges similar to f1, 12 edges similar to f2, 12 edges similar 
to f3 and 6 edges similar to f4, Figure 13. Therefore,  

2 2 3 3( , ) 3 6 12 12 .n n nG x x x x x      
 

Theorem 9. The omega polynomial of fullerene graph C12n+4(Figure 14) is as follows: 
2 6 1

12 4Ω( , ) 18 4 ( 2) 8 4 .n n
nC x x x n x x x
        

 

Proof. By Figure 15, there are five distinct cases of qoc strips. We denote the 

corresponding edges by e1, e2, …, e5. By table 1 one can see that |C(e1)|=2, |C(e2)| = n1, 
|C(e3)| = n, |C(e4)| = 1 and |C(e5)| = 6. On the other hand, there are 4, 8, 4, 18 and n-2 
similar edges for each of edges e1, e2, e3, e4 and e5, respectively. So, we have  
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2 6 1
12 4Ω( , ) 18 4 ( 2) 8 4 .n n

nC x x x n x x x
        

 

.

.

.

.
.

.

.

.
.

.
.

.

.
.

.

.

.

.
f1

f2
f3

f4

 

 
Figure 13.The Schlegel graph of C24n fullerene. 

 

Figure 14. The molecular graph of C12n+4 fullerene. 
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.
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.

 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 

 

Figure 15. Four different types of edges in C24n Fullerene. 
 

Table 6. The Number of CoDistant Edges of ei, 1 ≤ i≤ 5. 

 

No. Number of Co-Distant Edges Type of Edges 
4 2 e1 
8 n 1 e2 
4 n e3 
18 1 e4 

n 2 6 e5 

 
Theorem 10. The Omega polynomial of the fullerene graph C12(2n+1) is as follows: 

3 2 -2 -1 2 4Ω( , ) 12 12 6 3 , 2     n n nG x x x x x n  
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Proof. By Figure 16, there are four distinct cases of qoc strips. We denote the 
corresponding edges by e1, e2, e3 and e4. By table 1 one can see that |C(e1)|=3, |C(e2)| = 
2n - 2, |C(e3)| = 2n + 4 and |C(e4)| = n -1. On the other hand, there are 12, 12, 3, and 6 
similar edges for each of edges e1, e2, e3, and e4, respectively. So, we have 

3 2 -2 -1 2 4Ω( , ) 12 12 6 3 , 2     n n nG x x x x x n . 

f1

f3

f4

f2

 
 

Figure 16. The qoc strips of edges in graph of fullerene C12(2n+1). 

 

Table 7. The number of co-distant edges of ei, 1 ≤ i≤ 4. 

 

Edge 
The Number of Co 

Distant Edges 
No.

e1 3 12 

e2 2n-2 12 

e3 2n+4 3 

e4 n-1 6 
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Theorem 11. Let F be a fullerene. Then, ( ,0) 0G   if and only if F be an IPR 

fullerene. 
 

Proof. Let ( ,0) 0G  . This implies the multiplicity of x in definition of Omega 

polynomial is zero. Since every hexagonal face has 3 strips of length 2, thus none of the 
pentagons make contact with each other. Conversely, if F be an IPR fullerene, then the 

length of every strip is greater than 2. Hence, 2
1 2 0( 0) ... 0xG, x x       . 

 
Lemma 12. Let G be a graph on n vertices, m edges and   be number of its qoc strips. 
Then 

( )
1

Sd G

m
   .                                                     (15) 

Proof. By using definition of Sadhana index we have: 

( ) (| ( ) | ) | ( ) | ( 1)s s ss s s
Sd G m E G s m E G m s α m         . 

 
Corollary 13. Let F1 and F2 be fullerenes of order n. Then 

1 2 1 2( ) ( ) ( ) ( )Sd F Sd F F F    . 

Proof. Since ( ) ( 1)Sd G m   the proof is straightforward. 

 
Theorem 14. Suppose F be an IPR fullerene, then 

( ) ( 2) / 2.Sd G m m   

Proof. For every qoc strip C of F, |C| ≥ 2. Since 2 m  , thus 
( )

1 / 2
Sd G

m
m

   and so 

( ) ( 2) / 2.Sd G m m   
 

Theorem 15.Let F be afullerene graph. Then ( ) (2 '( 0)) .Sd F G m  ,  
 

Proof. Let r and s be the number of qoc strips of length 1 and 2, respectively. Clearly 
'(0)r    and since every hexagonal face has at least 3 qoc strips of length 2, thus 

'3 ( ,0)G   . By using equation (15) the proof is completed. 
 

Conjecture 16. Among all of fullerenes F on n vertices the IPR fullerene has the 
minimum value of Sd(F). 
 

Let G be a fullerene graph on n vertices. A leapfrog transform Gl of G is a graph 
on 3n vertices obtained by truncating the dual of G. Hence, Gl = Tr(G*), where G* 
denotes the dual of G. It is easy to check that Gl itself is a fullerene graph. We say that 
Gl is a leapfrog fullerene obtained from G and write Gl =Le(G). In the other word, for a 
given fullerene Fn put an extra vertex into the centre of each face of Fn. Then connect 
these new vertices with all the vertices surrounding the corresponding face. Then the 
dual polyhedron is again a fullerene having 3n vertices 12 pentagonal and (3n/2)-10 
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hexagonal faces. A sequence of stellationdualization rotates the parent sgonal faces 
by π/s. Leapfrog operation is illustrated, for a pentagonal face, in Figure 17. 

 

 

Figure 17. Leapfrog of a pentagonal face. 

 

In Figure 18, one can see that the fullerene graph C20 and its Leapfrog, namely 
C60. Also, in Figure 19 the 3 dimensional leapfrog graph of C24 and C30 are depicted. 
We denote the Leapfrog of graph G by Le(F). 

 

 

 

 

 

Le(C20) = C60. 

Figure 18. Fullerene graph C20 and its Leapfrog. 
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L(C20) = C60. 

Figure 19. Le(C24) and Le(C30). 

 

Example 17. Consider the fullerene graph F24 in Figure 20. This fullerene graph has 36 
edges. Similar to example 1 one can see that Ω(x) = 24x + 6x2 and so Sd(x)= 24x35 + 
6x34. In Figure 20 one can see the planer graphs F24 and Le(F24).  
 

  

F24 Le(F24) 

Figure 20.The Leapfrog of graph F24. 

 

Example 18. Consider the fullerene graph F26 depicted in Figure 21. This fullerene 
graph has 39 edges. Similar to examples 1 and 2 one can see that Ω(F26, x) = 21x + 9x2 
and so, Sd(F24, x)= 21x38 + 9x37. By computing these polynomials for the Leapfrog 
fullerene we have:  
 

Ω(G, x) = 24x3 + 6x6 + x9. 
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F26 Le(F26) 

Figure 21. The Leapfrog of graph F26. 

 
An automorphism of the graph G = (V, E) is a bijectionσ  on V which preserves 

the edge set e, i. E., if e = uv is an edge, then σ( ) σ( )σ( )e u v  is an edge of E. Here the 

image of vertex u is denoted by σ( )u . The set of all automorphisms of G under the 

composition of mappings forms a group which is denoted by Aut(G). Aut(G) acts 
transitively on V if for any vertices u and v in V there is α ( )Aut G  such that α( )u v . 

Similarly G = (V, E) is called edge-transitive graph if for any two edges e1 = uv and e2 = 

xy in E there is an element β ( )Aut G  such that 1 2β( )e e  where )()()( 1 vue  . 

Furthermore, if F be a fullerene graph then, Aut(F) = Aut(Le(F)).  
As a result of Lemma 32 we compute the Omega polynomial of a hyper – cube. 

The vertex set of the hypercube Hn consist of all ntuples b1b2…bnwith }1,0{ib . Two 

vertices are adjacent if the corresponding tuples differ in precisely one place. So the 

hyper – cube Hn has 2n vertices and n.2n-1 edges. On other word, 2 2 2n
n

H K K K    . 

It is well – known fact that Hn is vertex and edge transitive. We use of this result 
and we have the following Theorem: 

 

Theorem 19.
12)(



n

nxH n . 
 

Proof. Let e = uv be an arbitrary edge of Hn. By computing the qoc strips one can see 
that c = |C(e)| = 2n-1. Furthermore, since |E(Hn)| = n.2n-1 the proof is completed.  

 

Now, let G = (V, E) be a graph. If Aut(G) acts edge-transitively on V, then we 
have the following Lemma: 
 

Lemma 20. Let )(GEe  be an arbitrary edge and c = |C(e)|. Then the Omega 

polynomial of graph G is as follows: 
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| ( ) |
Ω( ) cE G

G,x x
c

 . 

Proof. Because Aut(G) acts edge-transitively on E, so we can divide E to some qoc 
strips of equal size. One can see that each qoc strip is of length c. 
 
Example 21. Consider the fullerene graph C20 shown in Figure 22. It is easy to see C20 

is edge - transitive, |E| = 30 and c=1. So by using Lemma 19 we have xxG 30),(  .  
 

Fullerenes C20 and C60 are the only edge - transitive fullerenes. So it is important 
how to compute the Omega polynomial for graphs in which Aut(G) is not edge - 
transitive. One can apply the following Theorem for this case: 
 

Theorem 22. Suppose Aut(G) acts on E and E1, E2, …,En be its orbits. Then the Omega 

polynomial of G is as 
1

| |
( ,x)

n ci i
i i

E
G x

c



  , where ie E  and ci = |C(ei)|.  

Proof. We know Aut(G)acts edge-transitively on its orbits. By using Lemma 4 the proof 
is straightforward.  
 

Theorem 22 implies when the acting Aut(G) is not edge – transitive then, 
),( cGm 's in equation 1, determine exactly the qoc strips of orbits of Aut(G). In the 

other word for an arbitrary edge e belong to E(G), when we say m(G,c) = k, it means 
there exist an orbit such that Δ with c = |C(e)| and m(G,c) = | Δ | = k. Thus for a given 
graph of high order it is sufficient to compute all of orbits of Aut(G) acting on E.  
 

 

Figure 22.The graph of fullerene C20. 

 

By continuing our methods described in this paper one can consult the graph of 
fullerene

 326 nF


. Hence, we have the following Theorem: 
 

Theorem 23. Consider the fullerene graph nF
36 3  (n ≥ 2) depicted in Figure 23. Then 

the Omega polynomial is as follows: 
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( ) ( ) ( 1) ( )
2 2 2 2

1 1 1 3
( ) ( ) ( ) ( )

2 2 2 2

( ) ( )3 3 2 3 2 3 72 2

1 1
( ) ( )3 3 2 3 4 3 52 2

18 15 (2 3 1) 6(3 1) 2 |
Ω(G, ) .

18 12 3(2 3 1) 2(3 1) 2 |

n n n n

n n n n

n n

n n

x x x x n
x

x x x x n



   

  

 
  


      

 


      
 

Proof. At first by we can prove 36 12( )Aut F D . In other word generators of 36( )Aut F  

are as follows, Figure 24: 
 

a := (1,2)(3,6)(4,5)(7,13)(8,12)(9,11)(14,18)(15,17)(20,26)(21,25)(22,24)(19,27)  
      (28,30)(31,36)(32,35)(33,34); 
b := (1,2,3,4,5,6)(7,9,11,13,15,17)(8,10,12,14,16,18)(21,23,25,27,29,19)  
       (22,24,26,28,30,20)(31,32,33,34,35,36); 

 

It is necessary to consider two cases. At first suppose n be even. 36( )Aut F act on 

edges of F36 and it has exactly four orbits. Since for a fullerene graph F, Aut(F) = 
Aut(Le(F)), by using Theorem 7, there are four types of edges for qoc strips. We denote 

them by e1, e2, e3 and e4. It is not difficult to see that |C(e1)| = 2/3n , |C(e2)| = 2/32 n , 

|C(e3)| = 2/)2(32  n  and |C(e4)| = 2/37 n . On the other hand there are 18, 15, 

132 2 
n

 and )13(6 2 
n

 edges of type e1, e2, e3 and e4, respectively. Now let n be odd. 

By the same way we can see there are four types of edges for qoc strips namely e1, e2, e3 
and e4, |C(e1)| = 3(n+1)/2, |C(e2)| = 2 × 3(n+1)/2, |C(e3)| = 3(n+2)/2 × 4 and |C(e4)| = 5 × 3(n+3)/2. 

Also, there are 18, 12, )132(3 2

1


n

 and )13(2 2

1


n

 edges of type e1, e2, e3 and e4, 

respectively. 
 

Corollary 24. For the fullerene graph n36 3
F


 (n ≥ 2) the Sadhana polynomial is as 

follows: 

( ) ( ) ( 1)( )2 2 2| | 3 | | 3 2 | | 3 2218 15 (2 3 1)

( )( ) 2| | 3 726(3 1) 2 |
(G, )

1 1 11( ) ( ) ( )( )2 2 2| | 3 | | 3 2 | | 3 4218 12 3(2 3 1)

31 ( )( ) 2| | 3 522(3 1) 2 |

n n nn
E E Ex x x

nn
Ex n

Sd x
n n nn

E E Ex x x

nn
Ex n

          


        
        
 

   

 

in which 332||  nE . 
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Figure 23. The graph of fullerene 36F . 

 

e 1

e 2

e 3

 
 

Figure 24(i). The graph of 
 336 nF


for n = 1. 

 



28                                                                                                                  M. GHORBANI 

 

 

 

 

 

 

 

e 2

e 3

e 4

e 1

 
 

Figure 24(ii). The graph of 
 336 nF


for n = 2. 
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e 2

e 4

e 3

e 1

 

Figure 24(iii). The graph of 
 336 nF


for n = 3. 

 
In this section by using definition of Omega and Sadhana polynomials, we compute 

these counting polynomials for a special class of fullerenes, namely n4 3
F


. In other word, 
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n4 3
F


 is an infinite family of fullerenes with 4 3n  carbon atoms and 12 3n  bonds (the 

graph G, Figure 25 is n=1) constructed by Leapfrog principle. At first we should to 
compute some computational examples. 
 
Example 25. Suppose F12 denotes the fullerene graph on 12 vertices (Figure 25). The co 
– distant edges are shown by the same colors. Then Ω(x) = 6x3 and Sd(x) = 6x9.  
 

 

Figure 25. The fullerene graph F12. 
 
Example 26. Consider the fullerene graph F36 with 36 vertices, Figure 26. Then one can 
see that Ω(x) = 6x6 + 6x3and Sd(x) = 6x30 + 6x33.  
 
Example 27. The Omega and Sadhana polynomials of fullerene graph F108, Figure 27, 
are as follows: 

Ω(x) = 6x9 + 6x18and Sd(x) = 6x90 + 6x99. 

 

Theorem 28. Consider the fullerene graph n4 3
F


, see Figure 28. Then  

9 1 18( ) 6 (3 3) .nx x x     

Proof. By Figure 28, there are two distinct cases of qoc strips. We denote the 
corresponding edges by e1 and e2. By using table 1 and Figure 28 the proof is 
completed. 
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Figure 26. The fullerene graph F36. 
 

 
 

Figure 27.The fullerene graph F108. 
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Table 8. The number of co-distant edges of ei, i = 1, 2. 

No. Number of co-distant edges Type of Edges 

3n-1-3 18 e1 

6 9 e2 

   

 

Corollary 29. 
1 12 3 9 1 2 3 18( ) 6 (3 3) .

n nnSd x x x
         

 

Corollary 30. 2 2( ) 4 3 2 3 .n nSd G      

 

e1

e2

 

Figure 28.The molecular graph of the fullerene n4 3
F


 for n = 3. 

Carbon exists in several forms in nature. One is the so-called nanotube which 
was discovered for the first time in 1991. Unlike carbon nanotubes, carbon nanohorns 
can be made simply without the use of a catalyst. The tips of these short nanotubes are 
capped with pentagonal faces; see Figure29. Let p, h, n and m be the number of 
pentagons, hexagons, carbon atoms and bonds between them, in a given nanohorn H. 

Then one can see that 2 22 41n r r   , 
23 65 112

2

r r
m

 
  (r = 0,1,…) and the 

number of faces is f = p + h. By the Euler’s formula n − m + f = 2, one can deduce that 

p = 5 and 
2 21 24

2

r r
h

 
 , r = 1, 2, ….  
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(a) (b) 

Figure 29. 2D and 3D graph of nanohorn H. 

 
In This paper by using definition of Omega polynomial we compute it for infinite class 
of nanohorn H depicted in Figure29. 
 
Example 31. Consider the fullerene graph F24 in Figure 30. This fullerene graph has 36 
edges. Similar to example 1 one can see that Ω(x) = 24x + 6x2 and so Sd(x)= 24x35 + 
6x34. In Figure 30 one can see the planer graphs F24 and Le(F24).  
 
Example 32. Consider the fullerene graph F26 depicted in Figure 31. This fullerene 
graph has 39 edges. Similar to Examples 30 and 31 one can see that Ω(F26, x) = 21x + 
9x2 and so, Sd(F24, x)= 21x38 + 9x37. By computing these polynomials for the Leapfrog 
fullerene we have:  

Ω(x) = 24x3 + 6x6 + x9. 

 

2.4 POLYOMINO CHAINS OF 8–CYCLES 

A kpolyomino system is a finite 2-connected plane graph such that each interior face 
(also called cell) is surrounded by a regular 4k-cycle of length one. In other words, it is 
an edge-connected union of cells.  
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F24 Le(F24) 

 

Figure 30. The leapfrog of graph F24. 

 

  

F26 Le(F26) 

Figure 31. The Leapfrog of graph F26. 

 

 
 

Figure 32. The zigzag chain of 8-cycles. 
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Example 33. Consider the graph G shown in Figure 32. One can see this graph has 
exactly 2 strips C1 and C2. On the other hand |C1| = 3 and |C2| = 2. Hence, 

3 2( ) 3 10x x x   and 26 27( ) 3 10 .Sd x x x   

e2

e1

 

Figure 33. The zig-zag chain of 8-cycles, n = 1. 

 

Example 34. For the graph H depicted in Figures33, 34 there exist two distinct strips C1 
and C2. Similarly, |C1| = 3 and |C2| = 2. Hence, 

3 2( ) 7 18x x x   and 28 2 28 1( ) 7 18 .n nSd x x x    

e2

e1

 

Figure 34. The zig-zag chain of 8-cycles, n =2. 
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In generally, this graph has two distinct strips of lengths 2 and 3, respectively. In 
other words we have the following Theorem: 
 
Theorem 35. Consider the graph of 2-polyomino system depicted in Figure 35. Then: 

3 2( ) (4 1) (8 2)x n x n x     and 28 2 28 1( ) (4 1) (8 2) .n nSd x n x n x      

Consider now, another version of 2-polyomino system Hn. when n = 1, Figure 
35, there exist three strips of length 2, 3 and 4, respectively. In other words,  

4 3 2( ) 2 13x x x x    and 32 33 34( ) 2 13 .Sd x x x x    

Similarly for n = 2 (Figure 36), there exist three strips of length 2, 3 and 4, respectively. 

This implies 4 3 2( ) 2 5 24x x x x     and 67 68 69( ) 2 5 24 .Sd x x x x    

 By continuing this method it is easy to check that this graph has only three strips 
of length 2, 3 and 4, respectively. Thus by computing number of strips of equal size and 
substitute in the Omega polynomial the following Theorem can be deduced: 
 
Theorem 36. Let Hn be the graph of 2-polyomino system shown in Figure 36. Then: 

4 3 2

35 3 35 2 35 1

( ) (3 1) (11 2)

( ) (3 1) (11 2) .n n n

x nx n x n x and

Sd x nx n x n x  

     

    
 

e2 e1

e3

 
Figure 35. The graph of 2-polyomino system Hn, n = 1. 
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e 1
e 2

e 3

 
 

Figure 36. The graph of 2-polyomino system Hn, n = 2. 
 

2.5 TRIANGULAR BENZENOID 

In this section we compute counting polynomials mentioned in the text of triangular 
benzenoid graphs (see Figure 37). At first consider the graph of triangular benzenoid 

G[n] for n = 1. The Omega and Sadhana polynomials are 2( ) 3x x  and 4( ) 3x x  , 

respectively. By continuing this method, there exist n strips of length 2, 3, …,n + 1, 
respectively. In other words, if C1, C2, …,Cn be all strips of G[n], then there are 3 strips 
equivalent with |Ci|, i = 1, 2, …Hence we proved the following Theorem: 
 

Theorem 37.  

2 3 1( [ ], ) 3( )nG n x x x x      and | | 2 | | 3 | | 1( [ ], ) 3( )E E E nSd G n x x x x       , 

where |E| = 28n + 1. 
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1

2

3

n

 
 

Figure 37. The graph of triangular benzenoid graphs. 

 

3. PI INDEX 

Let  be the class of finite graphs. A topological index is a function Top from  into 
real numbers with this property that Top(G) = Top(H), if G and H are isomorphic. 
Obviously, the number of vertices and the number of edges are topological index. The 
Wiener [46] index is the first reported distance based topological index and is defined as 
half sum of the distances between all the pairs of vertices in a molecular graph. If 

, ( )x y V G  then the distance ( , )Gd x y between x and y is defined as the length of any 

shortest path in G connecting x and y [47,48]. 
Khadikar introduced another index called Padmakar-Ivan (PI) index [49]. The PI 

index of a graph G is defined as: 
PI = PI (G) = Σ [meu(e|G) + mev(e|G)] 

where for edge e = uv, meu(e|G) is the number of edges of G lying closer to u than v, mev 
(e|G) is the number of edges of G lying closer to v than u and summation goes over all 
edges of G. Similar to Sadhana polynomial we can define the PI polynomial. Then the 
PI index will be the first derivative of PI(x) evaluated at x=1.  

Let Ce be a strips containing all parallel edges with e. If G be a bipartite graph it 

is well – known fact that 
| |( ) ( , ) E s

sPI x s m G s x    . In other words, by using 

Omega polynomial in bipartite graph we can compute the PI polynomial and then PI index. 
Hence the following Theorems are resulted from Theorems 1, 2 and 3, respectively: 
 

Theorem 38. Considerthe graph of 2polyomino system depicted in Figure 35. Then: 
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28 2 28 1( ) 3(4 1) 2(8 2) .n nPI x n x n x      
 

Theorem 39. Let Hn be the graph of 2-polyomino system shown in Figure 36. Then: 
35 3 35 2 35 1( ) 4 3(3 1) 2(11 2) .n n nPI x nx n x n x        

 

Theorem 40. For the graph of triangular benzenoid graphs depicted in Figure 37 we 
have: 

| | 2 | | 3 | | 1( [ ], ) 3(2 3 ( 1) )E E E nPI G n x x x n x        . 

where |E| = 28n + 1. 
 

4. OMEGA POLYNOMIAL OF INFINITE CLASSES OF NANOSTRUCTURES 

Let G = (V,E) be a graph with finite vertex set V and edge set E  (V ×V ) \ {(v, v) | vV 

}. An edge (v,w) E is directed if ( , )w v E and undirected if (w, v) E. We denote a 

directed edge (v,w) by v → w and write v − w if (v,w) is undirected. If (v,w) E then v 
and w are adjacent . If v → w then v is a parent of w, and if v − w then v is a neighbor of 
w, see Figure 38. 

A path in G is a sequence of distinct vertices <v0, …,vk> such that vi−1 and viare 

adjacent for all 1 ≤ i≤ k. A path <v0, …,vk> is a semi-directed cycle if (vi, vi+1) Efor all 
0 ≤i≤ kand at least one of the edges is directed as vi→ vi+1. Here, vk+1 ≡ v0. A chain graph 
is a graph without semi-directed cycles. 

Let 1 1( ,..., , ,..., )k kG G G G v v  be a simple connected chain graph in Figure 39. 

Then 
1

| ( ) | | ( ) |
k

i
i

V G V G


  and 
1

| ( ) | ( 1) | ( ) |
k

i
i

E G k E G


   . 

1

2

3

4

5

6

7

3

4

1

2

(a) (b)
 

Figure 38. (a) Chain graph with chain components {1}, {2}, {3, 4} and {5, 6, 7};  
                       (b) a graph that is not a chain graph. 
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....G 1 G 2
G k

v1 v2 vk

 
Figure 39. Chain graph 1 1( ,..., , ,..., ).k kG G G G v v  

 

Lemma 41. Let 1 1( ,..., , ,..., )k kG G G G v v  be a simple connected chain graph and 

eE(G1) and f  E(G2). Then the edges e and f don’t satisfy in "co" relation. In the other 
words, Θ .e f  
 

Proof. Let e=ab  G1 and f = xyG2 be an arbitrary edges. We consider following case: 

(1) 1 1 1( , ) ( , )d a v d b v k  and 2 2 2( , ) ( , )d x v d y v k   Then 

1 1 2 2 1 2( , ) ( , ) ( , ) ( , ) 1d a y d a v d v v d v y k k      , 

1 1 2 2 1 2( , ) ( , ) ( , ) ( , ) 1d a x d a v d v v d v x k k      .  

This implies that. e θ f . 

(2) 1 1 1( , ) ( , )d a v d b v k   and 2 2 2 2( , ) , ( , ) 1d x v k d y v k   . So, 

1 1 2 2 1 2( , ) ( , ) ( , ) ( , ) 1d a x d a v d v v d v x k k       and 

1 1 2 2 1 2( , ) ( , ) ( , ) ( , ) 1d b x d b v d v v d v x k k      . This implies that fe  e θ f . 

(3) 1 1 1 1( , ) , ( , ) 1d a v k d b v k    and so, 

2 2 1 1 2 1( , ) ( , ) ( , ) ( , ) 1d x a d x v d v v d v a k k       and 

2 2 1 1 2 1( , ) ( , ) ( , ) ( , ) 1d y a d y v d v v d v a k k      . This implies that. e θ f . 

Lemma 42. Let 1 1( ,..., , ,..., )k kG G G G v v be a chain graph and ( )iu V G and ( )jv V G  

(1 , ,i j k i j   ). So, ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 1i i j j i jd u v d u v d v v d v v d u v d v v      . 
 

Proof. We know d(ui,uj)=1 and this complete the proof.  
 

Theorem 43. Let G be a simple connected graph with blocks G1, G2 and a cutedge uv, 

Figure 40. So, we have, 1 2( , ) ( , ) ( , )G x x G x G x    . 
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u v
G1 G2

 
Figure 40. A graph G with a cutedge uv. 

 
Proof. By using definition of omega polynomial and Lemma 1 one can see that 

1 2

1 2
1 1 2 2 1 2( , ) ( , ) ( , ) ( , ) ( , )c c

c c
G x x m G c x m G c x x G x G x        . 

 

Corollary 44. If 1 1( ,..., , ,..., )k kG G G G v v be a simple connected connected chain graph 

then we have: 
1

( , ) ( 1) ( , )
k

i
i

G x k x G x


     . 

 

Theorem 45. Let 1 2 1 2( , , , )G G G G v v  be simple connected chain graph. Then  

1 2( , ) ( , ) ( , )G x x G x G x     , 

and 

1 2

1 2

| ( )| | ( )|| ( )| 1
1 1 2 2( , ) ( , ) ( , )E G c E G cE G

c c
Sd G x x m G c x m G c x     . 

 

Corollary 46. Let 1 1( ,..., , ,..., )k kG G G G v v so: 

| ( )|| ( )| 1

1

( , ) ( 1) ( , ) i

i

k
E G cE G

i ic
i

Sd G x k x m G c x 



   and 
1

( , ) ( 1) ( , )
k

i
i

G x k x G x 


   . 

 

Corollary 47. Let T be a tree with n vertices and 1 1 1 1( , , , )n n nT T T T T v v   .Thus we 

have ( , ) ( 1) .nT x n x    

 
Proof. Let Tn-1 be a tree with n1 vertices constructed by cutting a vertex of degree 1 of 

Tn. It is easy to see that 1( , ) ( , )n nT x T x x   , 1 2( , ) ( , )n nT x T x x     and 

2 1( , ) ( , )T x T x x   . So, ( , ) ( 1) .nT x n x    

 

Example 48. Consider graph of dendrimer D with n vertices, see Figure 41. Because 
this graph is a tree with n vertices, we have ( , ) ( 1) .D x n x    

 

Theorem 49. Consider graph of nanostar dendrimer N with n vertices, see Figure 42. It 

is easy to see that | ( ) | 19nV G n and | ( ) | 22 1nE G n  . Now by using a same 
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discussion in corollary 7 We have 1 1 1 1( , , , )n n nG G G G v v   and then the following 

relations: 

1 1( , ) ( , ) ( , )n nG x x G x G x    , 

1 1( , ) ( , ) ( , )n nG x G x x G x    , 

1 2 1( , ) ( , ) ( , )n nG x G x x G x     , 

2 1 1( , ) ( , ) ( , )G x G x x G x    . 

 
Now by summation of these relations we have  

 

1 1( , ) ( , ) ( 1) ( 1) ( , )nG x G x n x n G x       . So 1( , ) ( 1) ( , )nG x n x n G x     . But 
2

1( , ) 3 9G x x x   . Thus, 2 2( , ) ( 1) (3 9 ) 9 (4 1)nG x n x n x x nx n x        , 
22 2 22 3( , ) (4 1) 9n n

nSd G x n x nx     and 2( , ) 18 (4 1)nG x nx n x    . 

 
Example 50.Suppose C20 denotes the fullerene graph on 20 vertices, see Figure 43(a). 
Then Ω(C20 , x) = 30x and so, Sd(C20,x) = 30x29. 
 
Example 51. Suppose C30 denotes the fullerene graph on 30 vertices, see Figure 43(b). 
Then Ω(G, x) = 20x + 10x2 + x5 and so, Sd(G , x) = 20x44 + 10x43 + x40. 
 
Example 52. Consider Table 3. In this table we compute the omega polynomial for 
some fullerene graphs. 
 
Theorem 53. Suppose Kn denotes the complete graph on n vertices. Then 

( 1)
(  ,  ) 

2n
n n

K x x


   and so 
( 3)

2( 1)
(  ,  ) 

2

n n

n
n n

Sd K x x



 .  

 

Proof. For every ( )ne E K , ( ) 1C e  and by using definition of omega polynomial the 

proof is trivial.  
 

Theorem 54. Suppose T is a tree on n vertices. Then (  ,  )  ( 1)T x n x   and so, 

2( ,  )  ( 1) nSd T x n x   . 
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Figure 41. 2D graphical representation of a dendrimer D. 
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n=1
G1

n=2
G2

....

....
Gn

 

Figure 42. 2D graphical representation of a nanostar dendrimer N. 
 

a b
 

 

Figure 43. (a) The fullerene graph C20 (b) The fullerene graph C30. 

 
 

5. EXAMPLES FOR CALCULATING OMEGA POLYNOMIAL 
 
 1. Case of infinite 2dimensional graph K: 

We have the Omega polynomial as 2 1 3 5 2 1 2 12( ... ) (2 1)p q qqx x x x p q x         . 

1. 1. Case: 2 ,2 | ,p q p q   
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 If q = 6, p = 5 then, the graph is as follows: 

 

 
and 11 3 5 7 9 11 13( , ) 6 2( ) 5 .G x x x x x x x x         
 
1. 2. Case: 2 ,2 | :p q p q    

 In this case if for instance p = 4, q = 7 then, the graph is as follows: 
 

 

 

and 9 3 5 7 9 13 15( , ) 7 2( ) 2 .G x x x x x x x x         We have also 

2 1 3 5 4 -1 4 12( ... ) ( - 2 1)p p pqx x x x q p x       . 

 

1.3. Case: 2q p  

 In this case if for instance p = 4, q = 9 then, the graph is as follows: 
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and 9 3 5 7 9 11 13 15 17( , ) 9 2( ) 2 .G x x x x x x x x x x           

 
2. Case of nanotubes G[p,q]. 
  

In this case the Omega polynomial isΩ( , ) .2p 2q+1G x qx  + 2px For example, if p = 5, q = 

4 then, the graph is as follows: 

 

and 10 9( , ) 4 10 .G x x x    If p = 6, q = 6 then, the graph is as follows: 
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and 12 13( , ) 6 12 .G x x x    
 

3. Case of nanotori H [p,q]: 

In this case the Omega polynomial isΩ( , ) .2p 2pqH x qx  + 2x For example if p = 

4, q = 5 then, the graph is as follows: 
 

 

and 8 40( , ) 5 2 .  H x x x  If p = 3, q = 3, then, the graph is as follows: 
 

 

and 6 18( , ) 3 2 .  H x x x  
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6. CALCULATING OMEGA POLYNOMIAL OF TUC4C8 NANOTUBES AND 

NANOTORI 
 
The Sadhana polynomial of a TUC4C8(R) nanotube and TUC4C8(S) nanotorus were 
computed as described above. The Sadhana polynomial of the 2-dimensional lattice of 
TUC4C8(R) graph K= KTUC[p,q] (Figure 44) is also computed. We denote a 
TUC4C8(R) nanotube by G = GTUC[p,q] and TUC4C8(S) nanotorus by H = HTUC[p,q] 
(Figures 45 and 46). It is easy to see that |V(G)| =4p(q+1), |V(H)| =4pq, |V(K)| = 
4(p+1)(q+1), |E(G)| = 6pq +5p, |E(H)| = 6pq and |E(K)| =6pq+5(p+q)+4. We begin with 
the molecular graph of K (Figure 44). One can see that there are three separate cases and 
the number of qoc strips is different. Suppose e1, e2 and e3 are representative edges for 
these cases. Then our programs described in last section shows that |C(e1)| = 
2min{p,q}+2, |C(e2)| =p and |C(e3)| =q. By definition of Omega polynomial and Table 9 
one can see that for α=min{p,q}:  
 

1 1 2 2 2 2Ω( , ) 2(2 ... 2 (| | 1) ),p q α αK x qx px x x p q x           
and so  

| ( )| 1 | ( )| 1 | ( )| 2 | ( )| 2

| ( )| 2 2

( , ) 2(2 ... 2

(| | 1) ).

E K p E K q E K E K α

E K α

Sd K x qx px x x

p q x

     

 

    

  
 

 

We now consider the molecular graph G, Figure 45. Figure 45 shows that there 
are three different cases and the qoc strips are different. Suppose e1, e2 and e3 are 
representatives of the different cases. One can see that |C(e1)| = 2q+2, |C(e2)| = q+1 and 
|C(e3)| =p. On the other hand, there are 2p, p, q similar edges for each of edges e1, e2 and 

e3, respectively. This implies that 1 2( 1)Ω( , ) 2p q qG x qx px px     and so 
| ( )| | ( )| 1 | ( )| 2( 1)( , ) 2 .E G p E G q E G qSd G x qx px px        

Figure 46 shows that there are three separate cases and the number of qoc strips 
are different. We denote these edges by e1, e2 and e3. One can see that |C(e1)| = 2pq, 
|C(e2)|=q and |C(e3)| = p (Figure 46). On the other hand, there are 2, p, q similar edges 

for each of edges e1, e2 and e3, respectively. Therefore, 2Ω( , ) 2p q pqH x qx px x    

and so | ( )| | ( )| | ( )| 2( , ) 2 .E H p E H q E H pqSd H x qx px x      
 

Table 9. The number of co-distant edges of ei, 1≤i≤3. 
No. Number of co-distant edges Type of edges 

4

4
2 | | 2p q 

  

2
4

,
2 2
2












=min{p,q} e1 

q p+1 e2 
p q+1 e3 
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1 2 . . p

2

.

.

q

xq+1

xp+1

e2

e3

e1

 
 

Figure 44. The qoc strips of 2-dimensional graph K of the TUC4C8(R) nanotube. 

1 2 . . . p

2

.

.

q

x2q+2

xq+1

xp

e2

e3

e1

 

Figure 45. The qoc strips of TUC4C8(R) nanotube G = GTUC [p,q]. 
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1 2

. . .

p

2

.

.

q

x2pq

xq

xp

e2

e3

e1

 

Figure 46. The qoc strips of TUC4C8(S) nanotorus H = HTUC [p,q]. 

 
1. Let Pn be a path of length n, and Cn be a cycle of length n. Then 

( , ) ( 1)nP x n x    and  

2

( , )n

n
x      2|n

C x 2
 nx        2|n


  


. 

 
Consider the ladder graph G with 18 vertices. We know  

10 2.G P P   

Here we have a cut of length 9 and 8 cuts of length 2, so 9 2( , ) 8Ω G x x x  . 

Also, we know that by using 

1 2

1 2

| V (H ) | | V (G ) | 
1 2( , ) ( , )  ( , )c c

c c
Ω G H x m G c x m H c x       (1)  and so we have 

( , ) ( 1) ( 1)m n
n mP P x n x m x      , for example 10 2G P P   and we have

2 9
9 2( , ) ( , ) 8 .G x P P x x x       
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2. Now we consider  5 4P P . There are 3 cuts of length 5 and 4 cuts of length 4. 

Thus we have: 
5 4

5 4( , ) 3 4Ω P P x x x   . 

 
3. Now we consider 5 4P C . There are 2 cuts of length 10 and 4 cuts of length 4. 

So, 10 4
5 4( , ) 2 4Ω P C x x x   .  By using equation (1) 

 

2( 1)
2( , )

( 1)

m n

n m
m n

m
n x x       2|m

P C x
n x mx         2|m

     
    

 

and so we have 10 4
5 4( , ) 2 4 .Ω P C x x x    

 

Now we consider 5 4C C . There are 2 cuts of length 10 and 5 cuts of length 4. 

So, 10 4
5 4( , ) 2 5Ω C C x x x    as another result we have: 

 

2

2

2 2

           2|m , 2|n

         2|m , 2|n
2

( , ) n
         2|m , 2|n

2
n

       2|m , 2|n
2 2

m n

m n

n m m n

m n

nx mx

m
nx x

C C x
x mx

m
x x

 

    



 

 , 

So 10 4
5 4( , ) 2 5Ω C C x x x   . 

 
Theorem 55. Let G1, G2, . . . ,Gn be bipartite connected cographs. Then we have 

1

1

( , ) ( , ). .

n

j i
j
j i

i

| V (G  ) | c
n

1 2 n i ic
i

Ω G  × G  × · · · × G  x m G c x






  

 

Theorem 56. The Omega polynomial of fullerene graph F12(2n+1) for n ≥ 2 is as follows: 
3 2 -2 -1 2 4Ω( , ) 12 12 6 3n n n

12(2n+1)F x x x x x     . 

 
Proof. By Figure 47, there are four distinct cases of qoc strips. We denote the 
corresponding edges by f1, f2, f3 and f4. By the Table 10 proof is completed. 
 

The aim of this section is to compute the counting polynomials of equidistant 
(Omega, Sadhana and Theta polynomials) of an infinite family C40n+6 of fullerenes with 
40n+6 carbon atoms and 60n+9 bonds (the graph G, Figure 48 is n = 2).  
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f1

f3

f4

f2

 

Figure 47. The graph of fullerene F12(2n+1) for n = 4. 

 

Table 10. The number of equidistant edges. 

Edge #Co distance Number of edges 

f1 3 12 

f2 2n-2 12 

f3 2n+4 3 

f4 n-1 6 
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Theorem 59. The Omega polynomial of fullerene graph C40n+6 is as follows: 
 

2 2 1 4 1 4

4 3 2 2 4 4 4 1

2 2 1 4 4 2

2 2 2 2 4 1 4 2

2 2 2 1 2 4 3 8 6

( ) 4 4 4 2 5 |

( ) 2 8 2 2 5 | 1

( , ) ( ) 8 4 2 2 5 | 2

( ) 4 4 4 2 5 | 3

( ) 4 4 4 2 5 | 4

n n n n

n n n n

n n n n

n n n n

n n n n n

a x x x x x n

a x x x x x n

G x a x x x x x n

a x x x x x n

a x x x x x x n

 

   

 

   

   

    



    

      

     

      

 

in which 2 3 4 10( ) 9 4 2 (2 3)a x x x x x n x      . 

 
Proof. By Figure 49, there are ten distinct cases of qoc strips. We denote the corresponding 
edges by e1, e2, …, e10. By using table 1 and Figure 49 the proof is completed. 
 

e1

e4

e5

e6

e7

e8

e9

e10

e2

e3

e11

 

Figure 48. The graph of fullerene C40n+6 for n = 2. 
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Table 11. The number of co-distant edges of ei, 1≤ i ≤10. 

No. Number of co-distant edges Type of Edges 

1 1 e1 

9 2 e2 

4 3 e3 

2 4 e4 

2n-3 10 e5 

2 

2 1 5 |
4 3 5 | 1
2 5 | 4, 2
2 2 5 | 3

n n
n n
n n n
n n


  
  

 

 e6 

2
4
4






 

4 1 5 | 3
2 5 | , 2
2 2 5 | 1, 4

n n
n n n
n n n

 
 
   

 e7 

4
4
2






 

2 2 5 | 1, 3
2 1 5 | 2, 4
4 1 5 |

n n n
n n n
n n

  
   
 

 e8 

1
2
2
2







 

8 6 5 | 4
4 2 5 | 3
4 4 5 | 1
4 5 | , 2

n n
n n
n n
n n n

 
  
  



 e9 

2 

4 1 5 | , 3
4 1 5 | 1
4 2 5 | 2
4 3 5 | 4

n n n
n n
n n
n n

 
  
  

 

      
      
      
      

 e10 

2 

2 1 5 |
2 5 | 2, 4
2 2 5 | 3

n n
n n n
n n


  
  

    
      

   
 e11 
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Graph of fullerene C40n+6 Edges codistant to e1 Edges codistant to e2 

   

Edges codistant to e3 Edges codistant to e4 Edges codistant to e5 

   

Edges codistant to e6 Edges codistant to e7 Edges codistant to e8 

  

Edges codistant to e9 Edges codistant to e10 Edges codistant to e11 

 
Figure 49. The main cases of fullerenes C40n+6 related to computing co-distant edges. 
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Corollary 60. The Sadhana polynomial of fullerene graph C40n+6 is as follows: 
 

| | 2 | | 2 1 | | 4 1 | | 4

| | 4 3 | | 2 2 | | 4 4 | | 4 1

| | 2 | | 2 1 | | 4 | | 4 2

| | 2 2 | | 2 2 | | 4 1 | |

( ) 4 4 4 2 5 |

( ) 2 8 2 2 5 | 1

( , ) ( ) 8 4 2 2 5 | 2

( ) 4 4 4 2

E n E n E n E n

E n E n E n E n

E n E n E n E n

E n E n E n E

b x x x x x n

b x x x x x n

Sd G x b x x x x x n

b x x x x x

     

       

     

     

   

    

     

    4 2

| | 2 2 | | 2 1 | | 2 | | 4 3 | | 8 6

5 | 3

( ) 4 4 4 2 5 | 4

n

E n E n E n E n E n

n

b x x x x x x n

 

        








 



     

 

in which | | 1 | | 2 | | 3 | | 4 | | 10( ) 9 4 2 (2 3)E E E E Eb x x x x x n x          and | | 60 9E n  . 

 
7. DESIGN OF TITANIUM OXIDE LATTICE 

A map M is a combinatorial representation of a (closed) surface. Several 
transformations or operations on maps are known and used for various purposes. We 
limit here to describe only those operations needed here to build the TiO2 pattern. 
Medial Med is achieved by putting new vertices in the middle of the original edges. Join 
two vertices if the edges span an angle (and are consecutive within a rotation path 
around their common vertex in M). Medial is a 4-valent graph and Med(M) = 
Med(Du(M)). 

Dualization of a map starts by locating a point in the center of each face. Next, 
two such points are joined if their corresponding faces share a common edge. It is the 
(Poincaré) dualDu(M). The vertices of Du(M) represent faces in M and vice-versa. 

Figure 50 illustrates the sequence of map operations leading to the TiO2 pattern: 
Du(Med(6,6)), the polyhex pattern being represented in Schläfli’s symbols. 
Correspondingly, the TiO2 pattern will be denoted as: (4(3,6)), squares of a bipartite 
lattice of 3 and 6 connected atoms, while the medial pattern: ((3,6)4). Clearly, the TiO2 
pattern can be done simply by putting a point in the centre of hexagons of the (6,6) 
pattern and join it alternately with the points on the center. It is noteworthy that our 
sequence of operations is general, enabling transformation of the (6,6) pattern embedded 
on any surface and more over, it provides a rational procedure for related patterns, to be 
exploited in cage/cluster building. 

 

 (a) 

 

(b) 

 

(c) 

 

Figure 50. Way to TiO2 lattice: (a) polyhex (6,6) pattern; (b) Med(6,6); (c) Du(Med(6,6)). 
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8. OTHER CLASSES OF FULLERENE GRAPHS 

The most famous fullerene are (5, 6) fullerenes [50]. Recently some other classes of 
fullerenes are considered by scientists who work on Mathematical Chemistry area. We 
denote these classes of fullerenes byC4, 6[n] and C3, 6[n], respectively. This section is 
devoted to compute counting polynomial of these classes of fullerenes.  
 

 (4, 6) Fullerenes: 
 

By using Euler’s formula n − m + f = 2, one can deduce that this class of fullerenes 

have exactly n/2  4 hexagonal faces and 6 tetragonal faces, where n is number of its 
vertices. One class of these fullerenes is depicted in Figure 51. This fullerene has 8n2 
carbon atoms and 12n2 bonds. We have the following Theorem for its Omega 
polynomial: 
 
Theorem 61. 

4 3( , ) 3 4( 1) .n nG x x n x     

Proof. By Figure 51, there are two distinct cases of qoc strips. We denote the 
corresponding edges by e1 and e2. By using Table 12 and Figure 51 the proof is 
completed. 
 

Table 12. The number of co-distant edges of ei, 1≤i≤5. 

No. Number of co-distant edges Type of Edges 

3 4n e1 

4(n-1) 3n e2 

 

e1

e2

 
Figure 51. The graph of fullerene C4,6[n] for n = 3. 
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 Corollary 62.
2 212 4 12 3( , ) 3 4( 1) .n n n nSd G x x n x     

 

 Corollary 63. 4 3( , ) 12 12 ( 1) .n nG x nx n n x     
 

 Corollary 64.
2 212 4 12 3( , ) ( , ) 12 12 ( 1) .n n n nPI G x G x nx n n x       

 

 (3, 6) Fullerenes: 
 

Again Euler’s formula for this class of fullerenes results that they have exactlyn/2 - 

2 hexagonal faces and 4 tetragonal faces. In this section we compute Omega and 

Sadhana polynomials of an infinite class of fullerene graphs, namely C8n fullerenes, see 

Figures 52, 53. In other words, this family of fullerenes has exactly 8n vertices and 12n 

edges.  

 
Figure 52. 2D graph of fullerene C8n for n = 2. 

 

Figure 53. 2D graph of fullerene C8n for n = 3. 

 

At first suppose n = 2 (Figure 52). By computing number of strips and their sizes 

Omega and Sadhana polynomials are as follows: 

2 6 4( , ) 2 4 2G x x x x    and 34 30 32( , ) 2 4 2Sd G x x x x   . 

When n = 3 (Figure 53), one can see that 2 6 4( , ) 2 4 2G x x x x    and 

34 30 32( , ) 2 4 2Sd G x x x x   . By computing this method we have: 
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Theorem 65. Consider the fullerene graph C8n(Figure 5). Then: 

2 4 2

8
2 4 2

12 2 12 4 10

8
12 2 12 4 11 10

2 ( 1) 4 2 |
( , ) ,

2 ( 1) 2 3 2 |

2 ( 1) 4 2 |
( , ) .

2 ( 1) 2 3 2 |

n

n
n n

n n n

n
n n n n

x n x x n
F x

x n x x x n

x n x x n
Sd F x

x n x x x n

 

 

    
   

   
   

 

Proof. To compute qoc strips we should to consider two cases: 

Case 1: n is even. According to Figure 54(a), there are 3 strips such as C(e1), C(e2) and 

C(e3) with 1| C(e ) | 2  ، 2| C(e ) | 4 and 3| ( ) | 2C e n . On the other hand, there are 2, n – 1, 

4 stripes of types C(e1), C(e2) and C(e3), respectively. This completes the first claim. 

Case 2: n is odd. According to Figure 54(b), there are 4 strips such as C(e1), C(e2), 

C(e3) and C(e4) with 1| ( ) | 2C e   ، 2| ( ) | 4C e  , | ( ) |3C e n and 4| ( ) | 2C e n . On the other 

hand, there are 2, n – 1, 2, 3 stripes of types C(e1), C(e2), C(e3) and C(e4), respectively. 

This completes the proof. 

e1

e2
e3

 
Figure 54(a). 2D graph of fullerene C8n when n is even. 
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e1

e2

e3

e4

 
Figure 54(b). 2D graph of fullerene C8n when n is odd. 

 

9. NANOSTAR DENDRIMER 

The goal of this section is computation of PI, Omega and Sadhana polynomials of 

nanostar dendrimer Gn, depicted in Figure 55. Let G be a bipartite graph,  e E G . It 

is clear that ( ) ( )C e N e . Hence, by using this note we can compute three counting 

polynomials. 

 
Figure 55. 2D graph of nanostar dendrimer Gn for n = 2. 

 
At first consider G1, in Figure 56. Obviously, there are two different strips, e. g. 

F1 and F2. On the other hand there are 36 strips of type F1 and 9 strips of type F2. 
Further, |F1| = 2 and |F2| = 1. Thus, we have  
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2 19 20 19 20( , ) 9 3 , ( ) 9 3 , ( , ) 18 3 .Ω G x x x Sd x x x PI G x x x       

F1

F2

 
Figure 56. 2D graph of nanostar dendrimer Gn for n = 1. 

 
Let us consider the graph of G2 depicted in Figure 55. Similar to the last case, there are 
two different strips, namely F1 and F2, in which |F1| = 2 and |F2| = 1. On the other hand 
there are 36 strips of type F1 and 9 strips of type F2. Further, |F1| = 2 and |F2| = 1. This 
implies  

2 85 86 85 86( , ) 36 9 , ( ) 9 3 , ( , ) 72 9 .Ω G x x x Sd x x x PI G x x x       

In generally, in Gn there are two strips F1 and F2, with |F1| = 2 and |F2| = 1. By 
counting strips equivalent with F1 and F2 respectively, it is easy to see that there are 

29 27 2n   strips of type F1 and 23 12 2n   cut edges. Thus we proved the following 
Theorem: 
 

Theorem 66. Consider the nanostardendrimerGn, for n ≥ 2. Then  
 

2 2 2

2 | | 2 2 | | 1

2 | | 2 2 | | 1

( , ) (9 27 2 ) (3 12 2 ) ,

( , ) (9 27 2 ) (3 12 2 ) ,

( , ) 2(9 27 2 ) (3 12 2 ) .

n n

n E n E

n E n E

Ω G x x x

Sd G x x x

PI G x x x

 

   

   

     

     

     

 

where | | | ( ) | 33 2 45n
nE E G    . 

 

10. CONCLUSION  

A counting polynomial C(G,x) is a sequence description of a topological property so 
that the exponents express the extent of its partitions while the coefficients are related to 
the occurrence of these partitions. Basic definitions and properties of the Omega 
polynomial Ω(G,x) and Sadhana polynomial Sd(G,x) are presented. These polynomials 
for some infinite classes of fullerenes and nanotubes are also computed. 

Omega polynomial introduced by M. V. Diudeacounts the quasi orthogonal cut 
qoc strips in a graph G=G(V, E). A qoc strip, defined with respect to any edge in G, 
represents the smallest subset of edges closed under taking opposite edges on faces. The 
first and second derivatives, in x= 1, of Omega polynomial enables the evaluation of the 



62                                                                                                                  M. GHORBANI 

 

Cluj-Ilmenau CI index. Composition rules for Omega polynomial in nanostructures, 
according to their topology, are derived. In recent years, several papers on methods for 
computing Omega polynomials of molecular graphs have been published.Good ability 
of these descriptors in predicting the heat of formation and strain energy in small 
fullerenes or the resonance energy in planar benzenoids was found. Omega polynomial 
is useful in describing the topology of tubular nanostructures. 

Our calculation was done by a combination of HyperChem [51], TopoCluj [52] 
and GAP [53]. We first draw the molecule by HyperChem and them load it into 
TopoCluj. We compute its distance matrix by TopoCluj and then upload this matrix into 
a GAP program. In this way, we obtain a very fast method for our calculations. 

 

 

MIRCEA V. DIUDEA, MCC 2010, CROATIA. 
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