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Nowadays, numerical models have great importance in every field 
of science, especially for solving the nonlinear differential 
equations, partial differential equations, biochemical reactions, etc. 
The total time evolution of the reactant concentrations in the basic 
enzyme-substrate reaction is simulated by the Runge-Kutta of order 
four (RK4) and by Non-standard finite difference (NSFD) method. 
ANSFD model has been constructed for the biochemical reaction 
problem and numerical experiments are performed for different 
values of discretization parameter ‘h’. The results are compared 
with the well–known numerical scheme, i.e. RK4. Unlike RK4 
which fails for large time steps, the developed scheme NSFD gives 
results that converge to true steady states for any time step used. 
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1. INTRODUCTION  AND PRELIMINARIES 

In this paper, we consider the well-known Michaelis-Menten biochemical reaction model 
[1], i.e., the single enzyme substrate reaction scheme 

ܧ + ܣ ⇌ ܻ ⟶ ܧ + ܺ,                                                                  (1) 
where ܧ is the enzyme, A the substrate, ܻ the intermediate complex and ܺ the product. The 
time evolution of scheme (1) can be determined from the solution of the system of coupled 
nonlinear ODE [2]. 

                                                
 Corresponding Author: (Email address: zainzafar2016@hotmail.com) 
DOI: 10.22052/ijmc.2017.47506.1170 

Iranian Journal of Mathematical Chemistry 
 

Journal homepage: ijmc.kashanu.ac.ir 



414                                                                             ZAFAR, REHAN, MUSHTAQ AND RAFIQ 

 

YkEAk
dE
dA

11  ,                                                                 (2) 

,)( 211 YkkEAk
dt
dE

                                        (3) 

,)( 211 YkkEAk
dt
dY                                                         (4) 

,2Yk
dt
dX                                                      (5) 

subject to the initial conditions 
0)0(,0)0(,)0(,)0( 00  XYEEAA                             (6) 

where the parameters ݇ଵ, ݇ିଵ and ݇ଶ are positive rate constants for each reaction. Systems 
(2) – (5) can be reduced to only two equations for ܣ and ܻ and in dimensionless form of 
concentrations of substrate ݔ, and intermediate complex between enzyme and substrateݕ, 
are given by [2]. 

xyyx
dt
dx  )(                                                              (7) 

)(1 xyyx
dt
dy

 


                                             (8) 

subject to the initial conditions 
0)0(,1)0(  yx                                                                         (9) 

where ߚ,ߙ and ߪ are dimensionless parameters. 
The time evolution of the reaction can be determined from the traditional purely 

numerical methods like the classical fourth order Runge-Kutta method (RK4), but we are 
interested in this work to solve the system of coupled nonlinear ODEs (7) and (8) by using 
NSFD. To do so, we proceed as follows: 
 
1.1 EQUILIBRIUM POINT 

To calculate equilibrium point, equate (7) and (8) equal to zero i.e, 
0)(  xyyx                                                                   (10) 

0)(1
 xyyx 


                                                                     (11) 

we obtain (ݕ,∗ݔ∗) = (0,0),that is the equilibrium point. 
 

2. RK4 METHOD 

In this section, we solve the systems (7) and (8) by RK4 Scheme as follows: 
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2.1  NUMERICAL EXPERIMENTS 

Numerical experiments are performed using values of parameters given in Table 2.1. 
 

  

Figure 2.1. Concentration of Substrate. Figure 2.2. Concentration of Intermediate 
Complex between Enzyme and Substrate. 

 

Table 2.1. The Parameters ,  and . 
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Figure 2.3. Concentration of Substrate. 
Figure 2.4. Concentration of 
Intermediate Complex between Enzyme 
and Substrate. 

 

  

Figure 2.5. Concentration of Substrate. 
Figure 2.6. Concentation of 
Intermediate Complex between 
Enzyme and Substrate. 

 

3. NONSTANDARD FINITE DIFFERENCE METHOD 

In this section we shall construct Non-Standard Finite Difference Scheme for the equations 
(7) and (8). First order time derivatives are described by using forward difference 
approximation [4, 5]. ݂̇(ݐ) can be approximated as 
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݊ for ,(݈݊)ݕ and (݈݊)ݔ ௡are the approximations ofݕ௡andݔ = 0,1,2, …,  and where ‘݈’ is step 
size of time. For satisfying biological nature of the continuous time model, it should be 
non–negative. The numerical method which has been developed to solve the system must 
hold Conservation law proposed by Mickens [6, 7]. To construct the NSFD scheme for 
system (7)−(8) we note the following statements  

(i) The linear and nonlinear terms on the right hand side of Equation (7) are in the 
form nnnn yxyxyyxx   ,)()(,1   

(ii) The linear and nonlinear terms on the right hand side of Equation (8) are in the 
form 11,,   nnnn yxyxyyxx   

So,  

nnnn
nn

yxyx
h

xx


 


)(1
1

                                                    (14) 

}{1 11
1





 nnnn

nn

yxyx
h

yy



                                       (15) 

Eq. (14) implies that  
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3.1  CONVERGENCE ANALYSIS 

The stability and convergence of the proposed NSFD scheme about equilibrium point (0,0) 
are discussed here. Let 
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Lemma [11]: For the quadratic equation ߤଶ − ܣ ߤ + ܤ = 0, both roots satisfy |ߤ௜| < 1; ݅ =
1,2 if and only if the following conditions are satisfied: 

(i) AB 1  
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The first condition of the Lemma is AB 1 , so by using the values of A  and B  we have 
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which proves that h2 > 0. 
The second condition of the Lemma is 01  BA , so by using the values of A  

and B  we get 
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The third condition of the Lemma is B1 , so by using the values of A  and B  we obtain 
 hh 2  .)2(0 h  

Since 0h  and all conditions of the theorem are true, the System is Stable for all 
values of h  and converges to steady state.  
 
3.2  NUMERICAL EXPERIMENTS 

Numerical experiments are performed using values of parameters given in Table 2.1. 
 

 

Figure 3.1. Concentration of Substrate. Figure 3.2. Concentration of Intermediate 
Complex between Enzyme and Substrate. 
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Figure 3.3. Concentration of Substrate. Figure 3.4. Concentration of Intermediate 
Complex between Enzyme and Substrate. 

  

Figure 3.5. Concentration of Substrate. Figure 3.6. Concentration of Intermediate 
Complex between Enzyme and Substrate. 

 

 

Figure 3.7. Concentration of Substrate. Figure 3.8. Concentration of Intermediate 
Complex between Enzyme and Substrate. 
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Figure 3.9. Comparison between NSFD 
and RK4. 

Figure 3.10. Comparison between NSFD and 
RK4. 
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Table 4.1. The Effect of Different Time Step. 
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Table 4.1 shows that the RK-4 method converge for small values of parameter ℎ and 
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large value of discretization parameter i.e. ℎ = 1000. It isto be noted that the authors of 
[11] solved this problem by multistage homotopy perturbation method and homotopy 
perturbation method. In both cases they statedthat the step size ℎ should be very small 
otherwise the methods will diverge, but in our case, the step size is irrelevant. 

 

5. CONCLUSION 

Figures 3.9 and 3.10 show the comparison of NSFD scheme with Runge-Kutta method of 
order 4. It can be observed that when step size has been increased up to 0.16, the RK–4 
scheme gives negative values of both concentrations, while the proposed NSFD scheme 
preserves positivity and convergence of the solution for these values of step size. Unlike 
RK-4 which fails for large time steps, the developed NSFD scheme gives results that 
converged to true steady states for any time step used. The proposed scheme is easy to 
implement and numerically stable. 
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