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Let G be a simple connected graph. A perfect matching (or 
Kekulé structure in chemical language) of G is a set of disjoint 
edges which covers all vertices of G. The anti–forcing number 
of G is the smallest number of edges such that the remaining 
graph obtained by deleting these edges has a unique perfect 
matching and is denoted by af(G). In this paper we consider 
some specific graphs that are of importance in chemistry and 
study their anti–forcing numbers. 
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1. INTRODUCTION  

All graphs considered in this paper are undirected and simple. Let G  be a simple graph 
with vertex set )(GV  and edge set )(GE . A perfect matching or 1–factor (or Kekulé 
structure in chemical literature) of G  is a set of disjoint edges which covers all vertices of 
G . Perfect matching has many practical applications, such as in dimer problem of 
statistical physics, Kekulé structures in organic chemistry and personnel assignment of 
operations research, etc. For more details on perfect matching, we refer the reader to see 
[8]. 

In 2007, Vukičević and Trinajstić [9,10] introduced the anti–forcing number of a 
graph G  with perfect matching M. A set MS   is called a forcing set of M  if S  cannot 
be contained in another perfect matching of G  other than M. The forcing number (or innate 
degree of freedom) of M  is defined as the minimum size of all forcing sets of M, denoted 
by ),( MGf  [5, 6]. The minimum forcing number of G  is the minimum value of the 
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forcing numbers of all perfect matchings of G , denoted by )(Gf . Zhang et al. [11] proved 
that the minimum forcing number of fullerenes has a lower bound three and there are 
infinitely many fullerenes achieving this bound. For )(GES  , let SG   denote the graph 
obtained by removing S  from G . Then S  is called an anti–forcing set if SG   has a 
unique perfect matching. The cardinality of a smallest anti–forcing set is called the anti–
forcing number of G , denoted by )(Gaf . An edge e  of G  is called an anti–forcing edge if 

eG  has a unique perfect matching. Note that |)(=|)( GEGaf  if and only if G  does not 
have any perfect matching. A graph G  is called odd or even graph, if the number of 
vertices of G  is odd or even, respectively. 

Recently, Lei et al. [7] defined the anti–forcing number of a perfect matching M  of  
a graph G  as the minimal number of edges not in M  whose removal to make M  as a 
single perfect matching of the resulting graph, denoted by ),( MGaf . By this definition, the 
anti–forcing number of a graph G  is the smallest anti–forcing number over all perfect 
matchings of G . 

In the next section, after computing the anti–forcing number of some specific 
graphs, the anti–forcing number of the link and the chain of graphs are discussed. Also we 
study the anti–forcing number of chain triangular cactus and chain square cactus as a 
special kind of the chain of graphs that are of importance in chemistry. In Section 3, we 
consider two graph operations, the join and the corona of two graphs and obtain some 
relations between the anti–forcing number of two graphs G1 and G2 and the anti–forcing 
number of the join and the corona of them under some suitable assumptions. Finally, in 
Section 4, we compute the anti–forcing number of some dendrimers. 
 
2. ANTI–FORCING NUMBER OF SPECIFIC GRAPHS 

In this section, we shall compute the anti–forcing number of some specific graphs. First we 
consider some certain graphs such as paths, cycles, wheels, friendship and Dutch–windmill 
graphs. The following example gives the anti–forcing number of path, cycle and wheel 
graphs. 
 
Example 2.1 Let nP , nC  and nW  be a path, cycle and wheel of order n , respectively. We 
have   

݂ܽ( ௡ܲ) = ൜݊ − 1 2 ∤ ݊ 
0 2|݊ (௡ܥ)݂ܽ , = ൜݊ 2 ∤ ݊

1 2|݊  and ݂ܽ( ௡ܹ) = ൜2(݊ − 1) 2 ∤ ݊
2 2|݊ . 

 
As another specific graph, we consider friendship graph Fn which is a graph that 

can be constructed by coalescence n  copies of the cycle graph C3 with a common vertex. It 
is obvious that this graph does not have any perfect matching and so 
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nnFEnFaf 3=|)(|=)( . For the stars graphs nK1,  there is no perfect matching, thus 

nSaf n =)( , for 2n  and 0=)( 1,1Kaf . Also for the n –book graph nB  which can be 

constructed by joining n  copies of the cycle graph 4C  with a common edge },{ vu , 
1=)( nBaf .  

Let ),( nkWd  be an undirected graph, constructed for 2k  and 2n  by joining n  
copies of the complete graph kK  at a shared vertex. We have 

1)(2/1=|)(|   1,1)(=|)(|  kknGEnkGV  (see [4]). We have the following theorem for 
the anti–forcing number of ),( nkWd . 
 

Theorem 2.2 1)(
2
1=)),(( kknnkWdaf .  

Proof. Suppose that n  is even. Obviously, for every k , ),( nkWd  is an odd graph and so 
the graph does not have any perfect matching. It implies that for every k , 

1)(2/1=)),(( kknnkWdaf . Now assume that n  is odd, then for odd k , the order of 
),( nkWd  is odd too and hence the graph does not have any perfect matching. For even k , 

using Tutte’s Theorem we have the same result. So we can conclude that 
1)(2/1=)),(( kknnkWdaf .                                                                                               ■ 

 
 Here, we consider some graphs with specific construction that are of importance in 
chemistry and study their anti–forcing number. First we define the link of graphs.  
 
Definition 2.3 [3] Let 1G , 2G , ..., kG  be a finite sequence of pairwise disjoint connected 

graphs and let )(, iii GVyx  . The link G  of the graphs k
iiG 1=}{  with respect to the vertices 

k
iii yx 1=},{  is obtained by joining an edge the vertex iy  of iG  with the vertex 1ix  of 1iG  for 

all 1...,2,1,= ki  (see Figure 1 for 4=k ).  
 

 
Figure 1: A link of four graphs. 

 
Theorem 2.4 Let ),...,,( 21 kGGGL  be the link of k  graphs kGGG ,...,, 21 . If every iG

)(1 ki   has perfect matching, then  
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).(=)),...,,((

1=
21 i

k

i
k GafGGGLaf 

 
Proof. It sufficies to prove the theorem for 2=k . Let 1G  and 2G  be two graphs with 
perfect matching. Let )( 11 GVx  , )( 22 GVx   and ),( 21 GGL  be the link of these two 
graphs obtained by joining an edge the vertex 1x  with the vertex 2x . Suppose that 1S  and 

2S  have the smallest cardinality over all anti–forcing sets of graphs 1G  and 2G , 
respectively. So |=|)( 11 SGaf  and |=|)( 22 SGaf . It is obvious that the edge 21xx  does not 
belong to any perfect matching of ),( 21 GGL . So if S  has the smallest cardinality over all 
anti–forcing sets of graph ),( 21 GGL , then 21= SSS   and so,  
 ,)2()1(=|2||1|=||=))2,1(( GafGafSSSGGLaf   
which completes our argument.                                                                                           ■ 
 
 Note that if there exist ki 1  such that iG  does not have any perfect matching, 

then Theorem 2.4 is not true. For example, 12=)),,(( 443 CCPLaf , but 

4=)(2)( 43 CafPaf  . Now, we consider the chain of graphs and study the anti–forcing 
number of them for different cases. 
 
Definition 2.5 [3] Let kGGG ,...,, 21  be a finite sequence of pairwise disjoint connected 

graphs and let )(, iii GVyx  . The chain G  of the graphs k
iiG 1=}{  with respect to the 

vertices k
iii yx 1=},{  is obtained by identifying the vertex iy  with the vertex 1ix  for 

11  ki , see Figure 2 for 4=k .  
 

 
Figure 2: A chain of four graphs. 

 
Theorem 2.6 Let ),...,,( 21 kGGGC  be the chain of k  graphs kGGG ,...,, 21 .   

i. If kGGG ,...,, 21  are odd graphs, then .|)(|=)),...,,((
1=21 i

k

ik GEGGGCaf   

ii. If kGGG ,...,, 21  are even graphs, then for every even k  we have  

 
.|)(|=)),...,,((

1=
21 i

k

i
k GEGGGCaf 
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Proof.  
i. It can easily verified that 1)(|)(||=)),...,,((|

1=21  kGVGGGCV i
k

ik . Thus in this 

case, for every k , ),...,,( 21 kGGGC  is an odd graph and so  

 .|)),...,,((=|)),...,,(( 2121 kk GGGCEGGGCaf  
Since |)(|1==|)),...,2,1((| iGEk

ikGGGCE  , we have the result.  

ii. It is easy to see that in this case the chain graph ),...,,( 21 kGGGC  is an odd graph 
and so we have the result.  

Hence the result.                                                                                                                    ■ 
 
Remark 2.7 Theorem 2.6(ii), is not true for odd k . For example, 0=)),,(( 242 PPPCaf  and 

1=)),,(( 442 CPPCaf .  
 
 As special cases of chain graphs, we can consider cactus chains. A cactus graph is a 
connected graph in which no edge lies in more than one cycle. Consequently, each block of 
a cactus graph is either an edge or a cycle. If all blocks of a cactus G  are cycles of the 
same size k , the cactus is k –uniform. A triangular cactus is a graph whose blocks are 
triangles, i.e., a 3 –uniform cactus. A vertex shared by two or more triangles is called a cut–
vertex. If each triangle of a triangular cactus G  has at most two cut–vertices, and each cut–
vertex is shared by exactly two triangles, we say that G  is a chain triangular cactus. The 
number of triangles in G  is called the length of the chain. An example of a chain triangular 
cactus is shown in Figure 3. 
 

 
Figure 3:A chain triangular cactus nT  and square cactus nO , respectively. 

 
 Obviously, all chain triangular cactus of the same length are isomorphic. Hence, we 
denote the chain triangular cactus of length n  by nT . clearly, a chain triangular cactus of 

length n  has 12 n  vertices and n3  edges [1]. Since nT  does not have any perfect 

matching, we have nTaf n 3=)( . 
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By replacing triangles in chain triangular chain nT  by cycles of length 4 , we obtain 

cactus whose every block is 4C  as shown in Figure 3. We call such cactus, square cactus 
and denote a chain square cactus of length n  by nO  [1]. 
 
Theorem 2.8 Let nO  be a chain square cactus. We have  

I. If n is even, then nOaf n 4=)( .  

II. If n is odd, then 
2

1=)( nOaf n .  

 
Proof.  

I. By Tutte’s Theorem, there is no perfect matching for nO  in this case and so 

nOaf n 4=)( .  

II. For this case the anti–forcing number of nO  is equal with the anti-forcing number 

of ),...,(
)

2
1(

44   

timesn

CCL


. Since 1=)( 4Caf , so we have the result by Theorem 2.4.  

This proves the theorem.                                                                                                     ■ 

3. ANTI–FORCING NUMBER OF SOME OPERATIONS OF GRAPHS 

In this section, we shall study the anti–forcing number of some operations of two graphs. 
First we consider the join of two graphs. The join 21 GG   of graphs 1G  and 2G  with 
disjoint point sets )( 1GV  and )( 2GV  and edge sets )( 1GE  and )( 2GE  is the graph union 

21 GG   together with all the edges joining )( 1GV  and )( 2GV . The following theorem 
gives a lower bound for the anti–forcing of join of two graphs. 
 
Theorem 3.1 Let 1G  and 2G  be two simple graphs. Then we have  

 ).()()( 2121 GafGafGGaf   
Proof. Suppose that 21, SS  and S  have the smallest cardinality over all anti–forcing sets of 
graphs 21,GG  and 21 GG  , respectively. So |1|=)1( SGaf , |2=|)2( SGaf and 

|=|)( 21 SGGaf  . By definition of 21 GG  , |)2(||)1(|=|)21(| GVGVGGV   and 
|)(||)(|>|)(| 2121 GEGEGGE  . Thus for the choosing the perfect matchings of 21 GG  , we 

have more possibilities than the number of perfect matching of 1G  plus the number of 
perfect matchings of 2G . It means that |||||| 21 SSS   and so we have the result.              ■ 
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Remark 3.2 The lower bound in Theorem 3.1 is sharp. For example
)()(=6=)( 3333 CafCafCCaf  . Also, if 1G  is an odd graph and 2G  is an even graph, then  

 ).()(>)( 2121 GafGafGGaf   
Because for odd graph 1G , we have |)(=|)( 11 GEGaf  and for even graph 2G , 

|)2(|)2( GEGaf  . Also 21 GG   is an odd graph. So  
 ).2()1(|)2(||)1(|>|)21(|=)21( GafGafGEGEGGEGGaf   
Here, we consider the corona of two graphs and then we study the anti–forcing number of 
them. We recall that the corona of two graphs 1G  and 2G , written as 21 GG  , is the graph 
obtained by taking one copy of 1G  and |)(| 1GV  copies of 2G , and then joining the i-th 
vertex of 1G  to every vertex in the i-th copy of 2G . 
 
Theorem 3.3 Let 1G  and 2G  be two simple graphs. If both of 1G  and 2G  have perfect 
matching, then  

 ).(|)(|)(=)( 21121 GafGVGafGGaf   
Proof. Suppose that 1S  and 2S  have the smallest cardinality over all anti–forcing sets of 
graphs 1G  and 2G , respectively. So |=|)( 11 SGaf  and |=|)( 22 SGaf . Let 

},...,,{=)( 211 nxxxGV  and },...,,{=)( 212 myyyGV . For every ni 1  and every mj 1

, the edge ji yx  cannot be in the perfect matchings of 21 GG  . Let S  has the smallest 

cardinality over all anti–forcing sets of graph 21 GG  . Then  

  
timesGV

SSSS



)|1(|

221 ...=  

and we have  

 ).(|)(|)(|=||)(|||=|=|)( 21121121 GafGVGafSGVSSGGaf   
This completes the proof.                                                                                                     ■ 
 
 Clearly, If 1G  has a unique perfect matching, then )(|)(=|)( 2121 GafGVGGaf   and 
if 2G  has a unique perfect matching, then )(=)( 121 GafGGaf  . For example 

1=)( 24 PCaf   and 2=)( 42 CPaf  . 
Now this question comes to mind: what happens to the anti–forcing number of 

graph G1oG2, when at least one of the G1 or G2 does not have any perfect matching? It can 
easily verified that if only G1 does not have any perfect matching, then the graph G1oG2 
does not have any perfect matching too and so af(G1oG2) = |E(G1oG2)|. But if G2 does not 
have perfect matching, then the anti–forcing number of G1oG2 just depends on G2, because 
assume that u  V(G1) and (G2)u be a copy of G2 such that the vertex u  is adjacent to every 
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vertex of (G2)u. Since G2 does not have any perfect matching, then it has at least one 
unsaturated vertex. Without loss of generality we can suppose that v  V((G2)u) is the 
unsaturated vertex of (G2)u. Then Muv  where M  is a maximum matching of graph 
G1oG2. Thus every vertex of G1 in M  is saturated by the edges that connect G1 with G2. In 
the following propositions, we consider the anti–forcing number of G1oG2, when G2 is a 
path, cycle or wheel of odd order n , respectively. 

 
Figure 4: The nPK 1  in the proof of Proposition 3.4. 

 
Proposition 3.4 Let G  be a simple graph and nP  a path of odd order n . We have  

 .|)(=|)( GVPGaf n  
Proof. Let )(GVu  and unP )(  be a copy of nP  with the vertex set },...,{ 1 nvv  such that the 

vertex u  is adjacent to all vertices of unP )( . It can easily verified that if v  is one of the 

vertices in the set },...,,{ 31 nvvv , then the edge uv  belongs to a perfect matching of graph 

nPG  . Since vPn   has unique perfect matching and there exist (n+1)/2 ways to choose 

vertex )( nPVv , so we can conclude that the number of perfect matchings of nPK 1  is 

equal to (n+1)/2. Also n  is odd and so the perfect matching of nPG   does not related to 

the perfect matching of G . Thus the number of perfect matchings of nPG   is equal to 

[(n+1)/2]|V(G)|. Let }{= 1eS  (see Figure 4). Then S  has the smallest cardinality over all 
anti–forcing sets of graph nPK 1 . So for each odd n , we have 1=)( 1 nPKaf  . Obviously, 

the number of graphs nPK 1  is equal to |)(| GV  and this implies the result.                        ■ 
 
Proposition 3.5 Let G  be a simple graph and nC  be a cycle of odd order n . We have  

 .|)(|2=)( GVCGaf n  
Proof. Let )(GVu  and unC )(  be a copy of nC  such that the vertex u  is adjacent to every 

vertex of unC )( . Suppose that ))(( unCVv  and uv  belongs to one of the perfect matchings 



Anti–Forcing Number of Some Specific Graphs                                                                        321 

of graph nCG  . Since 1=  nn PvC , so vCn   has an unique perfect matching. Also to 

choose vertex )( nCVv  we have n  possibilities. Note that since n  is odd, thus the perfect 

matching of nCG   does not related to the perfect matching of G  and we can conclude that 

the number of perfect matchings of nCG   is equal to )|(| GVn . Let },{= 21 eeS  be as shown 
in Figure 5. Clearly, S  has the smallest cardinality over all anti–forcing sets of graph 

nCK 1 . So for every odd n , we have 2=)( 1 nCKaf  . Also the number of graphs nCK 1  
is equal to |)(| GV . So we have the result.                                                                           ■ 

 
Figure 5: The graph with },{= 21 eeS  in the proof of Proposition 3.5. 

 
Proposition 3.6 Let G  be a simple graph and nW  a wheel of odd order n . We have  

 .|)(|4=)( GVWGaf n  
Proof. Let )(GVu  and unW )(  be a copy of nW  such that u  is adjacent to every vertex of 

unW )( . Suppose that ))(( unWVv  and uv  belongs to one of the perfect matchings of graph 

nWG  . If 1 nCv , then to choose other edges of perfect matching of nWK 1 , we have 

(n−1)/2 possibilities and if 1Kv , then there exist two possibilities to choose other edges 
of perfect matching of nWK 1 . Since n  is odd, so the perfect matching of nWG   does not 

related to the perfect matching of G . Also 1nC  have 1n  vertices. Thus to choose perfect 

matching of nWG  , we have [1/2(n−1)2 + 2]|V(G)| possibilities. Let },,,{= 4321 eeeeS  as 
shown in Figure 6. Observe that S  has the smallest cardinality over all anti–forcing sets of 
graph nWK 1 . Then for every odd n , 4=||=)1( SnWKaf   and we can conclude that  

|)(|4=)( GVWGaf n . 
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Figure 6: The graph with },,,{= 4321 eeeeS  in the proof of Proposition 3.6. 

4. ANTI–FORCING NUMBER OF SOME DENDRIMERS 

Dendrimers are hyper–branched macromolecules, with a rigorously tailored architecture. 
They can be synthesized, in a controlled manner, either by a divergent or a convergent 
procedure. Dendrimers have gained a wide range of applications in supra–molecular 
chemistry, particularly in host guest reactions and self–assembly processes. Their 
applications in chemistry, biology and nano–science are unlimited [2]. 
 In this section, we shall find the anti–forcing number of certain polyphenylene 
dendrimers. First we obtain the anti–forcing number of the first kind of dendrimer of 
generation 1–3 that has grown n  stages.We denote this graph by ][3 nD . Figure 7 shows 

the first kind of dendrimer of generation 1–3 has grown 3 stages ][3 nD . Also we shall 
study the anti–forcing number of the first kind of dendrimer which has grown n  steps 
denoted ][1 nD . Figure 7 shows [4]1D . Note that there are three edges between each two 
cycle 6C  in this dendrimer. 
 
Theorem 4.1  
(i) Let ][3 nD  be a kind of dendrimer of generation 1–3 that has grown n  stages. Then 

24.23=])[( 4
3  nnDaf  

(ii) Let ][1 nD  be a kind of dendrimer that has grown n  stages. Then 

11.29=])[( 1
1  nnDaf  

 
Proof.  
(i) It follows from Tutte’s Theorem. 
(ii) It can be observe that from Figure 7 that ][1 nD  is an odd graph. So 

).2(1825|=])[(=|])[( 1

1=11
in

i
nDEnDaf  
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This completes our argument.                                                                                               ■ 

 
 

Figure 7: The dendrimers [3]3D  and [4]1D , respectively. 
 

Finally we consider another type of polyphenylene dendrimer by construction of 
dendrimer generations Gn that has grown n  stages. We simply denote this graph by PD2[n]. 
Figure 8 shows the generations G3 that has grown 3 stages. 
 
Theorem 4.2 Let ][2 nPD  be a type of polyphenylene dendrimer by construction of 
dendrimer generations nG  that has grown n  stages. Then we have  

 
).2(52=])[( 1

1=
2

 i
n

i
nPDaf

 
Proof. As you see in Figure 8, 

)

)1251=(2

6,...,6,6(=][2 

timesin
i

CCCLnPD



. 

Now the result follows from Theorems 2.1 and 2.4.                                                             ■ 
 



324                                                                                                    ALIKHANI AND SOLTANI 

 
Figure 8: Polyphenylene dendrimer of generations 3G  that has grown 3 stages. 
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