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The purpose of this study is to develop a new approach in modeling 
and simulation of a reverse osmosis desalination system by using 
fractional differential equations. Using the Legendre wavelet method 
combined with the decoupling and quasi-linearization technique, we 
demonstrate the validity and applicability of our model. Examples are 
developed to illustrate the fractional differential technique and to 
highlight the broad applicability and the efficiency of this method. 
The fractional derivative is described in the Caputo sense.  

 
 

                    © 2017 University of Kashan Press. All rights reserved 

Keywords: 

Reverse osmosis desalination system 
Legendre wavelet method  
DQL- technique 
Caputo fractional derivative 

 

1. INTRODUCTION  

In recent few decades, fractional calculus has caught much attention due to its ability to 
provide an accurate description of different nonlinear phenomena. Moreover, the fractional 
differential equations have gained considerable popularity of many researchers due to their 
applications in many engineering and scientific disciplines such as control theory, signal 
processing, information sciences, and many other physical and chemical processes and also 
in medical sciences, see [15−18, 20, 21, 24]. These equations are also used in the modeling 
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of physical processes running in dynamic mode [23, 22]. In this way, this work deals with 
the application of fractional derivatives for the desalination phenomenon. 

On the other hand, desalination of sea water appears as a strategic solution adopted 
by several countries to cope with drinking water availability problem. This process was 
intended only for industrial purposes due to the constraints of high desalination costs [1−5]. 
However, technological advances in the field of manufacture of membranes have reduced 
these costs and thus enable more countries to use this alternative as a freshwater resource. 
Actually, re-verse osmosis, due to its lower energy consumption and simplicity has gained 
much wider acceptance than the thermal alternatives. Reverse osmosis is based on a 
physical property called semi-permeability. Certain polymeric materials (membranes) 
allow water to pass more quickly than some substances such as dissolved salts. The 
principle is to apply a high enough pressure to overcome the osmotic pressure and reverse 
the flow of water. 

Many mathematical models have been proposed to describe the performance of 
reverse osmosis unit. For more details, we cite [1−5]. But, since the memory of phenomena 
plays a key role in mechanics, so a possible generalization of the classic desalination model 
would be a system with fractional order derivative. In this line of thought, Du et al. [11] 
found that a physical meaning of the fractional order is an index of memory. Then, 
Atangana et al. [8] proved that a fractional operator can provide a better interpretation of 
both physical and engineering processes. 

The authors in [30, 31] studied the overall performance of hollow fiber membranes 
by using the interplay of fiber productivity (defined as the fraction of feed recovered as 
permeate) and fiber selectivity or rejection. Two flow configuration modules for reverse 
osmosis hollow fiber membranes are considered: co-current and counter-current flow. 
Productivity and selectivity were plotted as functions of fiber length. It is found that at the 
entrance of the module, the term of productivity is equal to zero. This trend (flattening of 
the curve of productivity) is observed in the neighborhood of the entrance to the tube for 
the two cases: Co-current and Cross-current. This phenomenon is explained by the fact that 
the feed rate is constant and therefore the first derivative is equal to zero. 

In this paper, we will focus on the use of the fractional differential operator in the 
sense of Caputo for modeling a seawater desalination module using the reverse osmosis 
process. The numerical solution of the fractional differential model (FDM) is obtained by 
using the Legendre wavelet method combined with the decoupling and quasi-linearization 
technique. For more information about this new approach, we refer the reader to [6,7,9,14]. 
In this approach the Block-Pulse functions (BPFs) and the operational matrix of integration 
are used, FDM can be transformed to lower triangular system of algebraic equations. Then 
the solution of this system is used to determine a new numerical solution of FDM. At the 
end, and since the approach is not yet tested sufficiently on FDEs, some other problems are 
studied. 
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This work is organized as follows: Section 2 gives the fundamental equations to 
describe the transport phenomena in reverse osmosis by using the fractional model. Section 
3 introduces some necessary definitions of the Legendre wavelet method. We present a new 
operational fractional matrix of integration and we give the description of the proposed 
method. Section 4 gives the numerical investigations of the analytical findings. At the end, 
a conclusion follows. 

 
2. MODELING OF REVERSE OSMOSIS DESALINATION SYSTEM  

2.1. CLASSICAL MODEL OF REVERSE OSMOSIS DESALINATION SYSTEM 

Sea water desalination has become an inevitable alternative for many countries to 
overcome the shortage of natural fresh water. Among desalination technology, reverse 
osmosis is the most used method. This is mainly due to its simplicity, their costs, reduced 
compared to thermal processes. No heating or phase separation change is necessary. The 
major energy required for desalting is for pressurizing the seawater feed [19]. Reverse 
osmosis is a method of separation and concentration in the liquid phase. This process is 
applied to purify water for laboratory. The process consists in passing aqueous solution 
under pressure through an appropriate membrane and withdrawing the membrane permeate 
at atmospheric pressure and ambient temperature. The product obtained is enriched in one 
of the mixture components. The other components are recovered in the retentate with 
higher concentration in the high-pressure side of the membrane. Reverse osmosis 
membranes are generally mounted on supports called modules. Currently, the most used 
modules are: hollow fiber, tubular and spiral wound modules. Tubular modules are 
constituted of two concentric tubes designed to separate a given feed into a higher pressure 
stream (retentate) and a low pressure stream (permeate) see figure 1. According to the 
direction of the feed flow rate, there are two types of flow pattern: the co-current and 
counter-current flow pattern. 

Figure 1: Hollow fiber membrane. 
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A mathematical model was developed to predict the performance of hollow fiber 
reverse osmosis membrane with co-current flow pattern. The mass transfer model 
employed in this study is the solution-diffusion model. The solvent and salt mass flux are 
expressed by Fick's law. This model is developed by the author [1, 2]. It consists of a set of 
four strongly nonlinear differential equations. This system is found, according to material 
balance principle: 
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                                          (1) 

where  

ܳ௦௪ : is the water volumetric flow rate in the shell side, 

ܳ௙௪ : is the water volumetric flow rate in the fiber side, 

ܳ̇௦௦ : represents the solute mass flow rate in the shell side, 

ܳ̇௦௦ : is the solute mass flow rate in the fiber side, 

 ,is a proportionality coefficient ߢ

௪ܣ   is the water permeability coefficient (a function of salt diffusivity through the 
membrane), 

∆ܲ is the transmembrane pressure (a function of the feed, concentrate and permeate 
concentrations), 

 ,௪ is the water densityߪ

 ,௦ is the solute permeability coefficientܤ

The osmotic pressure is approximately represented by a linear function of solute 
concentrations ߨ =  .ܥ ߢ 

 

2.2. REVERSE OSMOSIS DESALINATION MODEL 

Lately, it has frequently been observed that the mathematical models represented by 
fractional order derivatives [11, 12, 13, 20] can provide better agreement between 
measured and simulated data than classical models based on integer order derivatives. In 
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classical desalination model [1, 2, 7], instead of a variation of order one, we consider, in 
this study, a variation of the order 1 < α < 2. Taking into account normalized variables, 

௦௪ࡽ =  ொೞೢ
ொೞೢబ

௙௪ࡽ , =  ொ೑ೢ
ொೞೢబ

௦௦̇ࡽ , =  ொ̇ೞೞ
ொ̇ೞೞబ

௙௦̇ࡽ ,  =  ொ̇೑ೞ
ொ̇ೞೞబ

 , 

if we replace the first order derivatives by fractional derivatives in (1), then a simple 
dimensional analysis shows that the left-hand sides of the equations have the dimension of 
(space)-α. But an examination of the right-hand sides shows that they have the dimension of 
(space)-1, so, we need to modify the right-hand sides to adjust the dimensions [12]. Thus, 
we formulate the fractional model of reverse osmosis desalination using Caputo fractional 
derivatives of order, 1 < α < 2 [10], the model is described by the non-linear Caputo 
fractional differential system: 
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where  
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Note that in the limit case ߙ → 1, the system (2) reduces to the classical system (1). 

3. LEGENDRE WAVELET METHOD 

In this section, we present some definitions and properties of fractional calculus. Then, we 
introduce some preliminaries on Legendre wavelets that are used throughout this paper. 
This section is ended by presenting some definitions, notations and basic facts of block 
pulse functions, [25−27]. 



350                                                                                                                                BELHAMITI AND ABSAR 

 

Let (݊ − 1)  ≤ ߙ < ݊, ݊ ∈ ℕ∗, a function ݂ ∈ ௡ܥ   (ܽ, ܾ). The Caputo derivative of 
order ߙ ≥ 0 is defined by 

଴஼ܦ     ௧
ఈ (ݐ)݂  =  

1
Γ(݊ − න(ߙ ݐ) − ߬)௡ିఈିଵ ݂(௡)(߬) ݀߬

௧

ఈ

= ௧௡ିఈܫ ൭
݀௡

௡ݐ݀ ݂
               ,൱(ݐ)

 

where 

Γ(ߙ): =  න ݁ି௨ {ߙ}ܴ݁   ,ݑఈିଵ݀ݑ 
ஶ

଴
> 0 

We note that the Caputo derivative of a constant function is zero. For more details 
on fractional calculus, we refer the reader to [10, 13]. 

3.1. LEGENDRE WAVELETS 

On the other hand, the wavelets are a family of functions constructed from dilatations and 
translations of a single function called the mother wavelet. We have the following family of 
continuous wavelets 

߰௔,௕(ݐ) =  |ܽ|ି
ଵ
ଶ ߰൬

ݐ − ܾ
ܽ ൰ , ܽ, ܾ ℝ, ܽ ≠ 0, 

where ߰(ݐ)  ∈  ଶ(ℝ) , a and b represent the dilation and the translation parametersܮ
respectively. If a and b have discrete values as 

ቐ
ܽ = ܽ଴ି௞ ,ܽ଴ > 1                                 
                                             ݊, ݇ ∈ ℕ,
ܾ = ݊ ܾ଴ ܽ଴ି௞ , ܾ଴ > 1                      

 

for n and m positive integers, we have the following family of discrete wavelets: 

߰௠,௡(ݐ) =  |ܽ଴|
௠
ଶ  ߰(ܽ଴௠ݐ −  ݊ ܾ଴) 

where ߰௠,௡(ݐ)  forms a wavelet basis for ܮଶ(ℝ). In particular, when a0 = 2 and b0 = 1,  
߰௠,௡(ݐ) forms an orthonormal basis. That is 〈߰௠,௡ ,߰௟,௞ 〉 = ௠,௟ߜ  .〉 ௡,௞ in whichߜ  , . 〉 
denotes the inner product in ܮଶ([0,1]). 

In this work, the mother wavelet is the Legendre polynomials. We de ne the 
orthogonal Legendre polynomials of order m by the following Rodriguez recurrence 
formula: 
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൞

(ݐ)଴ܮ = 1
(ݐ)ଵܮ = ݐ

(ݐ)௠ାଶܮ = ൬
2 ݉ + 3
݉ + 2 ൰ (ݐ)௠ାଵܮ ݐ −  ൬

݉ + 1
݉ + 2൰ ,(ݐ)௠ܮ 

 

with m = 0,1,2,3,… and t varies into [-1,1]. 

The Legendre wavelets are defined in [0; 1] by the following formula 

߰௠,௡(ݐ) =  ൝ඥ݉ + 1/2 2
ଵ
ଶ ܮ௠൫2௝ݐ − 2݊ + 1൯   if 

݊ − 1
2௝ିଵ ≤ ݐ ≤

݊
2௝ିଵ

0,   otherwise,                             
           

where ݊ = 1, … , 2௝ିଵ (݆ ∈  ℕ \{0}), ݉ = 0, … ,݊௖ − 1  (݊௖  ∈  ℕ \{0}) is the order of the 
Legendre polynomials and nc is the number of collocation points. However, the dilatation 
parameter is a = 2j/2 and the translation parameter is b = (2n−1)2j/2. 

The family  

൛߰௠,௡(ݐ)ൟ ௡ୀଵ,…,ଶೕషభ
௠ୀ଴,…,௡௖ିଵ

 

forms an orthonormal basis of ܮଶ([0,1]) [26]. Then, any function ݂ ∈  ଶ([0,1]) mayܮ

be decomposed as 

(ݐ)݂ =  ∑ ∑ ௡,௠ܥ  ߰௡,௠(ݐ)ାஶ
௠ୀ଴

ାஶ
௡ୀଵ ,                                                  (3) 

where ܥ௡,௠ =  〈݂,Ψ〉; in which 〈. , . 〉  denoted the inner product in ܮଶ([0,1]). 

The function in (3) can be approached by 

(ݐ)݂ =  ∑ ∑ ௡,௠ܥ  ߰௡,௠(ݐ) = ்ܥ  Ψ(ݐ)௡௖ିଵ
௠ୀ଴

ଶೕషభ
௡ୀଵ ,                                    (4) 

where  ܥ and Ψ(ݐ) are 2௝ିଵ ݊ܿ vectors given by  

ܥ = ଶೕషభ,௡௖ିଵ ൧ܥ,…,ଶೕషభ,ଵܥ,…,ଶ,௡௖ିଵܥ,…,ଶ,଴ܥ,ଵ,௡௖ିଵܥ,…,ଵ,଴ܥൣ 
்
                                            (5) 

Ψ(ݐ) =  ൣ߰ଵ,଴(ݐ), … ,߰ଵ,௡௖ିଵ(ݐ),߰ଶ,଴(ݐ), … ,߰ଶ,௡௖ିଵ(ݐ), … ,߰ଶೕషభ,଴(ݐ), … ,߰ଶೕషభ,௡௖ିଵ(ݐ) ൧
்       (6) 

The following property of the product of two Legendre wavelet vector functions will 
also be used 

(ݐ)Ψ் (ݐ)Ψ்ܣ =  Ψ்(ݐ) ̅(7)                                                  ,ܣ 

where  
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A =  ൣܽଵ,଴, … ,ܽଵ,௡௖ିଵ, ܽଶ,଴, … , ܽଶ,௡௖ିଵ, … ,߰ଶೕషభ,଴(ݐ), … ,߰ଶೕషభ,௡௖ିଵ(ݐ) ൧
்
 

and ̅ܣ is a 2௝ିଵ ݊ܿx2௝ିଵ ݊ܿ matrix [26]. 

3.2. BLOCK PULSE FUNCTION 

The block functions form a complete set of orthogonal functions which can be defined over 
[0;T] by 

௜ܾ(ݐ) =  ቊ1 ,     if ௜ିଵ
ଶೕషభ௡௖

ܶ ≤ ݐ < ௜
ଶೕషభ௡௖

 ܶ
0,                   otherwise,

                                              (8) 

where, ݅ = 1, … , 2௝ିଵ݊ܿ [27]. There are some properties for block pulse functions: the 
most important properties are disjointness and orthogonality. 

The disjointness property follows 

ܸ (ݐ)்ܾ (ݐ)ܾ = ෨ܸ  (ݐ)ܾ 

and 

෨ܸ = ൭
ଵܸ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ଶܸೕషభ ௡௖

൱ , 

where V is an 2௝ିଵ݊ܿ-vector. The block-pulse functions are orthogonal 

න ௜ܾ(ݐ),
்

଴
 ௜ܾ(ݐ) ݀ݐ =  ൝

ܶ
2௝ିଵ݊ܿ , ݅ = ݆

0, otherwise
 

where i; j = 1, 2,…, 2௝ିଵ݊ܿ. 

3.3. OPERATIONAL FRACTIONAL MATRIX OF INTEGRATION 

In the following section, we introduce new arguments for deriving the fractional Legendre 
wavelets operational matrix of integration. 

Let ݐ ∈ [0;  1] we define the Legendre wavelets operational matrix of integration as 
in [6, 26], 

∫ Ψ(ݔ) ݀ݔ = ܲ ௧
଴ Ψ(ݐ),                                                  (9) 

where 
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ܲ =  ଵ
ଶೕషభ

 ൮

ܮ ܨ ⋯ ܨ
0 ܮ ⋱ ⋮
⋮ ⋱ ⋱ ܨ
0 ⋯ 0 ܮ

൲, 

is the 2௝ିଵ݊ܿ x 2௝ିଵ݊ܿ operational matrix of integration, and L and F are nc x nc matrices. 
It is not difficult to see that 

൫ ଴ܫ ௧
଴ Ψ൯ (ݐ) =  Ψ(ݐ),                                                                                                                       

൫ ଴ܫ ௧
ଵ Ψ൯ (ݐ) =  න Ψ(ݔ) ݀ݔ = ܲ 

௧

଴
Ψ(ݐ),                                                                                      

൫ ଴ܫ ௧
ଶ Ψ൯ (ݐ) =  න ቆන Ψ(ݔ) ݀ݔ

௦

଴
ቇ݀ݏ = න ܲΨ(ݏ) ݀ݏ = 

௧

଴
P x P x Ψ(ݐ) =  Pଶ  Ψ(ݐ),

௧

଴
          

⋮

൫ ଴ܫ ௧
௡  Ψ൯ (ݐ) =  න ቆන Ψ(ݔ) ݀ݔ

௦

଴
ቆන Ψ(ݔ) ݀ݔ…

ఛ

଴
ቇ݀ݏቇ = P x P x … x Ψ(ݐ) =  P௡   Ψ(ݐ),

௧

଴

  

On the other hand, we have 

൫ ଴ܫ ௧
௡  Ψ൯ (ݐ) =  ଵ

Γ(௡)∫ ݐ) − ߬)௡ିଵΨ௧
଴ ݐ        ,߬݀ (߬) ∈  [0,1]. 

Using the convolution product, we can write 

൫ ଴ܫ ௧
௡  Ψ൯ (ݐ) =  (Ψ x ߶)(ݐ), 

where 

(ݐ)߶ =  (௧ିఛ)೙షభ

Γ(௡)
, (a causal function). 

The continuous character of the function Γ(α) is used to release Γ(n) and to define 
the integral operator of order α>0.This operator is defined as 

଴ܫ ௧
ఈ Ψ(ݐ) = ቐ

1
Γ(ߙ)න ݐ) − ߬)ఈିଵΨ

௧

଴
ߙ     ,߬݀ (߬) > 0

Ψ(ݐ),    ߙ = 0,
   

so 

൫ ଴ܫ ௧
ఈ Ψ൯(ݐ) = ܲఈΨ(ݐ) , ߙ > 0.                                                       (10) 

Now, to define the fractional Legendre wavelets operational matrix of integration, 
we give a result, in the transition matrix of the base B to the base Ψ(ݐ). 
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Proposition 3.3.1. For m = 0,1,…, nc-1, the relation between the Legendre wavelet vector 
and m-set of block-pulse functions can be written as 

Ψ(ݐ) =  (11)                                                               ,(ݐ)ܤ ܪ

where H is the  ൫2௝ିଵ݊ܿ൯ x ൫2௝ିଵ݊ܿ൯ passage matrix 

ܪ =  

⎝

⎜
⎜
⎜
⎛

ℎଵ,଴ … ℎଵ,௡௖ିଵ
⋮ ⋱ ⋮

ℎ௡௖,଴ … ℎ௡௖,௡௖ିଵ

… 0

⋮ ⋱ ⋮

0 …
ℎଵ,଴ … ℎଵ,௡௖ିଵ
⋮ ⋱ ⋮

ℎ௡௖,଴ … ℎ௡௖,௡௖ିଵ⎠

⎟
⎟
⎟
⎞

, 

and  

ℎ௜,௠ =  √2݉ + 1  ෍ (−1)௠ା௞  
(݉ + ݇)!

(݉− ݇)! (݇!)ଶ ݊ܿ௞  
(݅)௞ାଵ −  (݅ − 1)௞ାଵ

(݇ + 1)

௠ିଵ

௞ୀ଴

 

Proof. Let 

ℎ௜,௠ = න Ψ௡,௠(ݐ) ௜ܾ(ݐ) ݀ݐ = 
ଵ

଴
 ඨ݉ +  

1
2 2௝/ଶ  න ௠ܮ  ൫2௝ݐ − 2 ݊ + 1൯ 

௜
௤

௜ିଵ
௤

 .ݐ݀

On the first level n = 1, this formula becomes 

ℎ௜,௠ =  ට݉ +  ଵ
ଶ

 2௝/ଶ  ∫ ௠ܮ  ൫2௝ݐ − 1൯ 
೔
೜
೔షభ
೜

 .ݐ݀

Assuming that 2௝ݐ − 1, we obtain 

ℎ௜,௠ =  ඥ݉ + 1/2  2௝/ଶ  න ௠ܮ  (ݔ) 
ଶ௜
௡௖ିଵ

ଶ௜ିଶ
௡௖ ିଵ

                                                                                       ݔ݀

=  ඥ݉ + 1/2 2௝/ଶ  න ෍ (−1)௠ା௞
௠ିଵ

௞ୀ଴

ଶ௜
௡௖ିଵ

ଶ௜ିଶ
௡௖ ିଵ

ቀ݉݇ ቁ ቀ
݉ + ݇
݉ ቁ                        ݔ௞݀ݔ

                         

=  ඥ݉ + 1/2 2௝/ଶ  ෍ (−1)௠ା௞  
(݉ + ݇)!

(݉− ݇)! (݇!)ଶ ݊ܿ௞ ݍ

௠ିଵ

௞ୀ଴

 
(݅)௞ାଵ −  (݅ − 1)௞ାଵ

(݇ + 1)  ,

  

 We need also the following result [27]: 
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Proposition 3.3.2. Let α>0. The fractional integral of block-pulse function vector can be 
written as  

(ݐ) (ܤ ఈܫ) =  (12)                                                           ,(ݐ)ܤ ఈܨ

where Fα is the ൫2୨ିଵnc൯ x ൫2୨ିଵnc൯ matrix given by 

ఈܨ =  ቀ ்
ଶೕషభ௡௖

ቁ
ఈ ଵ

Γ(ఈାଶ)

⎝

⎜⎜
⎛

ଵ݂ ଶ݂ ଷ݂ ⋯ ݂ଶೕషభ௡௖
ଵ݂ ଶ݂ ⋯ ݂ଶೕషభ௡௖ିଵ

ଵ݂ ⋯ ݂ଶೕషభ௡௖ିଶ
0 ⋱ ⋮

ଵ݂ ⎠

⎟⎟
⎞

, 

and  

ቊ ଵ݂ = 1,
௣݂ = ఈାଵ݌ − ݌) 2 − 1)ఈାଵ + ݌)  − 2)ఈାଵ, ݌ = 2,3, … , 2௝ିଵ݊ܿ − ݅ + 1, 

with  ݅ = 1,2,3, … , 2௝ିଵ݊ܿ. 

Now, we prove the following result for the fractional matrix of integration: 

Theorem 3.3.3. The Legendre wavelets operational matrix P of fractional integration is 
given by 

ܲఈ =  ଵ.                                                                 (13)ିܪ ఈܨ ܪ

Proof. Using (10) and (11), we can write 

൫ ଴ܫ ௧
ఈ Ψ൯(ݐ) = (ݐ)(ܤ ܪ ఈܫ)  =  (14)                                           .(ݐ)(ܤ  ఈܫ)ܪ 

Thanks to (10) and (14), yields 

ܲఈΨ (ݐ) = ఈܨܪ     (15)                                                        .(ݐ)ܤ  

  By (11) and (15), we get 

ܲఈ(ݐ)ܤܪ =   .(ݐ)ܤఈܨ ܪ  

Therefore, 

ܲఈ =  .ఈିଵܨ ܪ  

3.4. ILLUSTRATION OF THE APPROACH 

In this subsection, we will describe our approach to solve numerically the system (2). We 
start with the decoupling and quasi-linearization iterative technique. It is summarized as 
follows: 
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Given initial proϐile for each solution:ࡽ௦௪
(଴)(ݔ),ࡽ௙௪

(଴)(ݔ) , ௦௦̇ࡽ
(଴)(ݔ), ௙௦̇ࡽ

(଴)(ݔ)

଴ܦ ௫
ఈࡽ௦௪

(௞ାଵ) = −ܿଵ + ܿଶ ൭
௦௦̇ࡽ

(௞ାଵ)

௦௪ࡽ
(௞ାଵ) −  

௙௦̇ࡽ
(௞ାଵ)

௙௪ࡽ
(௞ାଵ)൱                                                   

଴ܦ ௫
ఈࡽ௙௪

(௞ାଵ) = ܿଵ − ܿଶ ൭
௦௦̇ࡽ

(௞ାଵ)

௦௪ࡽ
(௞ାଵ) −  

௙௦̇ࡽ
(௞ାଵ)

௙௪ࡽ
(௞ାଵ)൱                                                      

଴ܦ ௫
ఈܳ௙௪ = −ܿଷ ൭

௦௦̇ࡽ
(௞ାଵ)

௦௪ࡽ
(௞ାଵ) −  

௙௦̇ࡽ
(௞ାଵ)

௙௪ࡽ
(௞ାଵ)൱                                                                 

଴ܦ ௫
ఈܳ௙௪ = ܿଷ ൭

௦௦̇ࡽ
(௞ାଵ)

௦௪ࡽ
(௞ାଵ) −  

௙௦̇ࡽ
(௞ାଵ)

௙௪ࡽ
(௞ାଵ)൱,                                                                    

 

where U(k+1) and U(k) are the approximations of the solution at the current and the preceding 
iteration, respectively. 

To find a solution of (2), we apply the method described above for each equation 
and we calculate the decoupling and quasi-linearization error by using the following 
formula 

஽ொ௅்ܧ
(௞ାଵ) = ݔܽ݉ ቀቛࡽ௦௪

(௞ାଵ) − ௦௪ࡽ 
(௞) ቛ

ଶ
,ቛࡽ௙௪

(௞ାଵ) − ௙௪ࡽ 
(௞) ቛ

ଶ
 , … ,ቛ̇ࡽ௦௦

(௞ାଵ) − ௦௦̇ࡽ 
(௞) ቛ

ଶ
 ቁ      (16) 

where ‖ .  ‖ଶ represents the Euclidian norm. This procedure gives the solution of the 
problem when the error is less than a given small epsilon. 

For ݑ ∈   ଶ ([0,1]), we develop our method for the problemܥ

ఈܦ (ݐ)ݑ  = (ݐ)ݑ (ݐ)݃ + ,(ݐ)݂ ∋ ݐ  ]0,1], 0 < ߙ ≤ 2                                     (17) 

such that  

൜ݑ
(0) = ଴ݑ

(0)′ݑ = ଵݑ
                                                                    (18) 

The condition (0)′ݑ = ଵ is only for 1ݑ < ߙ ≤ 2, where ݂,݃ ∈  ଶ([0,1]). Weܮ
approximate the derivative ܦఈ  : and the functions g and f as in (4) as follows ݑ 

 ቐ
ఈܦ (ݐ)ݑ  = ்ܷ  Ψ(ݐ)
(ݐ)݃ = ்ܩ  Ψ(ݐ)
(ݐ)݂ = ்ܨ  Ψ(ݐ)

                                                            (19) 

Using (10), we can write 
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(ݐ)ݑ = ఈܦఈ ൫ܫ ൯(ݐ)ݑ  + (0)ݑ +                        ݐᇱ(0)ݑ
= ఈ ൫்ܷܫ   Ψ(ݐ)൯ + ଴்݀ݑ  Ψ(ݐ) + ்ܧଵݑ  Ψ(ݐ) 
=  ்ܷܲఈ  Ψ(ݐ) + ଴்݀ݑ  Ψ(ݐ) + ்ܧଵݑ  Ψ(ݐ) ,

 

so  
(ݐ)ݑ =  (்ܷܲఈ  + ଴்݀ݑ  +  (20)                                      (ݐ)Ψ (்ܧଵݑ

where ݀ =  〈1,Ψ(ݐ)〉௅మ([଴,ଵ]) and ܧ =  ,௅మ([଴,ଵ]). Substituting (19) and (20) into (17)〈(ݐ)Ψ,ݐ〉 

we have 

்ܷΨ(ݐ) = ఈ்ܷܲ) (ݐ)Ψ்ܩ  + ଴்݀ݑ  + (ݐ)Ψ (்ܧଵݑ  + ்ܨ  Ψ(ݐ) 

Ψ୘(ݐ)ܷ = ఈ்ܷܲ) (ݐ)Ψ୘(ݐ)Ψ்ܩ  + ଴்݀ݑ  + ்(்ܧଵݑ   + Ψ୘(ݐ)ܨ 

= Ψ୘(ݐ) ܩ෨(்ܷܲఈ  + ଴்݀ݑ  + ்(்ܧଵݑ   + Ψ୘(ݐ)ܨ 

Thanks to (7), we obtain the following algebraic system 

൫ܫௗ − ܷ ෨(ܲఈ)்൯ܩ = ଴்݀ݑ)෨ܩ   + ்(்ܧଵݑ +  (21)                               .ܨ

The solution of the problem (17-18) is obtained by substituting U in (20). 
 

3.4.1. NUMERICAL TESTS 

In this section, we consider an example to show the efficiency and the accuracy of the 
proposed approach.  For 0 < ߙ ≤ 1 and ݐ ∈  [0,1], we consider the system : 

൞
ఈܦ (ݐ)ݑ  = (ݐ)ଶݑ  + (ݐ)ݒ +  ୻(ఉାଵ)

୻(ఉାଵିఈ)
ఉିఈݐ  − ଶ ఉݐ − ݐ√



(ݐ)ݒ ఈܦ = (ݐ)ଶݒ  + (ݐ)ݑ +  
୻ቀమାଵቁ

୻ቀమାଵିఈቁ
ݐ 


మିఈ − ݐ − ,ఉݐ

                                (22) 

such that  

൜(0)ݑ = 0
(0)ݒ = 0.                                                                     (23) 

The exact solution of (22) and (23) is given by  

ቊ
(ݐ)௘ݑ = ఉݐ

(ݐ)௘ݒ = ݐ√
 .

 

We employ the Legende wavelet method combined with the decoupling and quasi-
linearization technique for studying the solutions of the problem (22−23). 
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In the Figure 2, we see the evolution of the logarithmic error induced by the 
decoupling and quasi-linearization technique defined in (16). We observe a strict decrease 
of the error, which explains the convergence and the stability of the solution. 

Figure 2: Example 2: Error induced by DQLT. 

 

Then, as we know the exact solution, we estimate the absolute error of each solution is 
produced by cumulate of truncation, LWM and DQL technique by the following formula 

஺ܧ = ݑ‖ −  ௘‖ଶ.                                                               (24)ݑ

Figure 3: Example 2:The analytical and approximate solutions. 

 

We observe a good agreement between the analytical and approximate solutions 
(see Figure 3). However, the obtained result shows that this approach can provide better 
performance. 
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Table 1: Example 2: The point wise errors for u. 

t Exact Solution j=3 and nc=4 j=3 and nc=8 j=5 and nc=4 j=5 and nc=8 
0 0 6.3318e-04 1.5723e-04 3.9868e-05 9.9852e-06 

0.2 0.0400 6.4165e-04 1.6826e-04 4.0775e-05 1.0361e-05 
0.4 0.1600 5.4928e-04 1.5991e-04 3.8131e-05 1.0120e-05 
0.6 0.3600 4.5914e-04 1.4914e-04 3.5756e-05 9.8017e-06 
0.8 0.6400 4.4651e-04 1.3749e-04 3.6947e-05 9.4494e-06 
1 1.0000 4.5500e-04 1.2532e-04 3.9832e-05 9.0781e-06 

Table 2: Example 2: The point wise errors for v. 

t Exact Solution j=3 and nc=4 j=3 and nc=8 j=5 and nc=4 j=5 and nc=8 
0 0 7.8510e-04 8.8309e-04 7.5065e-05 1.0596e-04 

0.2 0.0894 8.7458e-04 1.9219e-04 7.5034e-05 2.0449e-05 
0.4 0.2530 1.7925e-03 3.2299e-04 2.2016e-04 3.9049e-05 
0.6 0.4648 1.0542e-03 3.4945e-04 1.1705e-04 4.2348e-05 
0.8 0.7155 5.1373e-05 3.7980e-04 1.8159e-04 4.6889e-05 
1 1.0000 3.7651e-05 3.8612e-04 1.7892e-04 4.7739e-05 

Finally, as can be seen in Tables 1-2, only a small number of collocation points is 
needed to get the approximate solution, which is a full agreement with the exact solution up 
to 6 Digits. The obtained solutions show that this approach can effectively solve systems of 
fractional differential equations. 

4. A SIMULATION STUDY 

In this section, we propose a new numerical solution for the mathematical model described 
in Section 2. The proposed approach seems to be very efficient for nonlinear differential 
systems. Numerical test shows that one important feature of our approach is that it gives a 
high-quality of the solution as well as a stability and a computational speed for a small 
number of collocation points. 

So, let us consider a small-scale reverse osmosis desalination fractional order model 
(2), where the co-current flow pattern is treated as shown in figure 1, associated with the 
conditions: 

                                                                                     Qୱ୵(0) = 226.8 

                                                                                        Q̇ୱୱ(0) = 2 Qୱ୵(0) 

Q୤୵(0) = 0 

                                                                                                  Q̇୤ୱ(0) = 0 
and 
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ୢ୕౩౭
ୢ୶

(0) = ୢ୕౩౭
ୢ୶

(0) = ୢ୕౩౭
ୢ୶

(0) = ୢ୕౩౭
ୢ୶

(0) = 0. 

The membrane specifications and the operating parameters are given in the table 3 
obtained from [29,28]. 

Table 3: The operating parameters. 

Parameters  Value 
The membrane diameter (Dm) 0.0576 m 
Water density (w) 103 kg/m3 
Solute permeability coefficient (Bs) 1.12 × 10-4 m/h 
Water permeability constant (Aw) 4.2 × 10-13 h/m 
Proportionality coefficient () 1.02 × 10+12  m2/h2 
Transmembrane pressure (P) 4.02 × 10+13 kg/m/ h2 

The feed rate consisting of water and salts (solute) flows continuously and 
tangentially inside the membrane. Following the permselectivte property of the membrane, 
water diffuses faster than the solute. At the output of the module, we obtain a permeate at 
the tube side with a low concentration of salts, and a retentate at the shell side with a very 
high concentration of salts (Figure 1). 
 

The results of simulation obtained by the proposed numerical solution method are 
shown in Figures 4−7. The first finding is that the behavior of the curves predicted by the 
model are very close to these obtained in the literature. 

Figures 4−7 (A) show the variation of the solute and water flow rate in the tube and shell 
side along the dimensionless parameter x. As predicted, the variation of water and solute 
flow rate are close to zero at the entrance of the module. In reality, at this point of the 
module, water and solute flow rates are both constants and therefore, their variation is equal 
to zero. This behavior is demonstrated in the proposed model, which is not the case of the 
classical model with an integer derivative (see Figures 4−7 (B)). 

Figure 4: The flow rate of the solute in tube-side. 
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Figure 5: The flow rate of the water in tube-side. 

(A) (B) 

Figure 6: The flow rate of the solute in shell-side. 

(A) (B) 

Figure 7: The flow rate of the water in shell-side. 
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Another means to verify the accuracy of the obtained results is to establish a matter 
balance. The following equation expresses the relative mass balance applied to the module: 

ଵܸ = ொೢೌ೟೐ೝି൫ொ೛೐ೝ೘೐ೌ೟೐_ೢೌ೟೐ೝାொೝ೐೟೐೙೟ೌ೟೐_ೢೌ೟೐ೝ൯
ொ೑೐೐೏_ೢೌ೟೐ೝ

= 0, 

ଶܸ = ொೞ೚೗ೠ೟೐ି൫ொ೛೐ೝ೘೐ೌ೟೐_ೞ೚೗ೠ೟೐ାொೝ೐೟೐೙೟ೌ೟೐_ೞ೚೗ೠ೟೐൯
ொ೑೐೐೏_ೞ೚೗ೠ೟೐

= 0. 

The examination of the mass conservation law is a pertinent factor for the validation 
of our simulation. The results show the quality of the proposed model for α = 1.5, by 
looking V1 for the water parameter is of the order of 2.45e-10 and V2 for the solute 
parameter is less than 1.08e-12. 

 

5. CONCLUSION 

In this study, simulation of small-scale reverse osmosis desalination problem was 
conducted using a new fractional model. Numerical method of Legendre wavelets 
associated with the decoupling and quasi-linearization technique was applied to solve 
equations of mass transfer. Comparison of model predictions with experimental results in 
the literature reveals that a reasonable agreement exists between them. Simulation results 
reveal that fractional model can be considered as a more efficient predictor as compared 
with classical model. According to the model results, the calculation of the difference 
between the quantity of matter in the feed-side and the permeate-retentate sides shows the 
quality of the solutions obtained by the proposed model. It can be concluded from the 
obtained results that the proposed model in this work can well give the best prediction of 
reverse osmosis desalination phenomena. 
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