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The first multiplicative Zagreb index 111(G) is equal to the product

of squares of the degree of the vertices and the second multiplicative
Zagreb index 115(G) is equal to the product of the products of the

degree of pairs of adjacent vertices of the underlying molecular
graphs G. Also, the multiplicative sum Zagreb index ri3(G) is

equal to the product of the sums of the degree of pairs of adjacent
vertices of G. In this paper, weintroduce a new version of the
multiplicative sum Zagreb index and study the moments of the ratio
and product of all indices in a randomly chosen molecular graph
with tree structure of order n. Also, a supermartingale is introduced

by Doob’s supermartingale inequality.

© 2017 University of Kashan Press. All rights reserved

1. INTRODUCTION

Molecular graphs can distinguish between structural isomers, compounds which have the
same molecular formula but non-isomorphic graphs- such as isopentane and neopentane.
On the other hand, the molecular graph normally does not contain any information about
the three-dimensional arrangement of the bonds, and therefore cannot distinguish between
conformational isomers (such as cis and trans 2-butene) or stereoisomers (such as D- and
L-glyceraldehyde).

In some important cases (topological index calculation etc.) the following classical
definition is sufficient: molecular graph is connected undirected graph one-to-one
corresponded to structural formula of chemical compound so that vertices of the graph
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correspond to atoms of the molecule and edges of the graph correspond to chemical bonds
between these atoms.

In the fields of chemical graph theory, molecular topology, and mathematical
chemistry, a topological index also known as a connectivity index is a type of a molecular
descriptor that is calculated based on the molecular graph of a chemical compound.
Topological indices are numerical parameters of a graph which characterize its topology
and are usually graph invariant. Topological indices are used for example in the
development of quantitative structure-activity relationships (QSARS) in which the
biological activity or other properties of molecules are correlated with their chemical
structure. The simplest topological indices do not recognize double bonds and atom types
(C, N, O etc.) and ignore hydrogen atoms (“hydrogen suppressed™) and defined for
connected undirected molecular graphs only. More sophisticated topological indices also
take into account the hybridization state of each of the atoms contained in the molecule.
Hundreds of indices were introduced. The Hosoya index is the first topological index
recognized in chemical graph theory, and it is often referred to as the topological index.
Other examples include the Wiener index, Randic’'’s molecular connectivity index,
Balaban’s J index, and the TAU descriptors [12].

Let G be a molecular graph. Two vertices of G, connected by an edge, are said to
be adjacent. The number of vertices of G, adjacent to a given vertex v, is the degree of
this vertex, and will be denoted by d(v). Gutman [5] introduced the following general

form for topological indices:

T, =TI(G) = Y F(d(u).d(v))

uveE(T)
where the summation goes over all pairs of adjacent nodes u,v of molecular graph G, and

where F = F(x,y) is an appropriately chosen function. In particular,F(x,y) = (xy) " for
Randi¢ index, F(x,y)=x+y for the first Zagreb index, F(x,y)=xy for the second
Zagreb index, F(x,Yy)=|x—y]| for the third Zagreb index, F(x,y)=(xy)"* (1 eR) for the
second variable Zagreb index, F(xy) = ((x+y—2)(xy))¥* for the ABC index,
F(x,y) = (xy(x+y—2)")*, for the augmented Zagreb index, F(x,y)= ZM(X+ y)™ for
the geometric-arithmetic index, F(x,y)=2(x+y)™" for the harmonic index and F(x,y) =
(x+y) "2 for the sum-connectivity index.

Todeschini et al. [15,16] proposed that multiplicative variants of molecular
structure descriptors be considered. Thus we have the following general form for
topological indices:

T, =TI1,(G)= [] F(d(u),d(v)).

uveE(T)
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When this idea is applied to Zagreb indices, one arrives at their multiplicative versions
I1,(G) and I1,(G), defined as l‘Il(G):l_[VEv(G)(d(v))2 and Hz(G):HUVEE(G)d(U)d(V)

[3, 4]. Réti and Gutman [14] provided lower and upper bounds for I, and I1, of a
connected graph in terms of the number of vertices, number of edges, and the ordinary,
additive Zagreb indices M, and M,. Let T, be the set of trees with n vertices. Gutman

[6] determined the elements of T,, extremal w.r.t. I, and II,. Iranmanesh et al. [7]

computed these indices for link and splice of graphs. In continuation, with use these graphs,
they computed the first and the second multiplicative Zagreb indices for a class of
dendrimers. Liu and Zhang [13] introduced several sharp upper bounds for IT,-index in
terms of graph parameters including the order, size, radius, Wiener index and eccentric
distance sum, and upper bounds for IT,-index in terms of graph parameters including the
order, size, the first Zagreb index, the first Zagreb coindex and degree distance. Xu and
Hua [18] obtained a unified approach to characterize extremal (maximal and minimal)
trees, unicyclic graphs and bicyclic graphs with respect to multiplicative Zagreb indices,
respectively. Recently, Wang and Wei studied these indices in k-trees [17].

Another multiplicative version of the first Zagreb index is defined as

I,(G) = HUVEE(G)(d (u)+d(v)) and is named as the multiplicative sum Zagreb index. Eliasi

et al. [2] proved that among all connected graphs with a given number of vertices, the path
has minimal IT,. They also determined the trees with the second-minimal IT,. Kazemi

[11] studied IT,,I1, and IT; in random molecular graphs with tree structure. He gave the

lower and upper bounds related to the moments of these indices.
We introduce the modified multiplicative sum Zagreb index, defined as
IL(G)= [T (d(u)+d(v))"™®,
uveE(G)
and study it in random molecular graphs with tree structure. An illustrative example is
provided in Figure 1.

2. EVOLUTION PROCESS

The structures of many molecules such as dendrimers and acyclic molecules are tree like.
We present the following evolution process for random trees of order n, which turns out to
be appropriate when studying the multiplicative Zagreb indices of molecular graphs with
tree structure [10].

Every order-n tree can be obtained uniquely by attaching nth node to one of the
n—1 nodes in a tree of order n—1. It is of particular interest in applications to assume the
random tree model and to speak about a random tree with n nodes, which means that all
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trees of order n are considered to appear equally likely. Equivalently one may describe
random trees via the following tree evolution process, which generates random trees of
arbitrary order n. At step 1 the process starts with a node. At step i the ith node is
attached to any previous node v of the already grown tree T of order i —1 with probability
pi(v) = 1/(i—1). For applicability of our own results and specially connection with the
chemical relevance, see [9].

Figure 1. A molecular graph with TT, =6718464, IT, = 8707129344,
I1, =14400000000 and I1, = 4x10>.

Let d(v,n) denote the degree of node v in our structure of order n. It is obvious
that 1<d(v,n)<n-1. We define B, to be the sigma-field generated by the first n stages
of the random molecular graphs with tree structure. Let T, be the set of trees with order n.
Then by definition of the multiplicative Zagreb indices for k >1 and i =1,2,3 [11],

1_Ii(Tn)k
1_Ii(Tnfl)k
where U is independent of B, ,. Let {y,,..., Y} be the neighborhood of the vertex U . Also

= £, (d(U,n-1))",(2)

dU,n-1) |
d(U,n-1)
fp (d(U,n-1))= (%J x(dU,n-1)+1), fori=2

10D dU,n-1)+d(y,,n-1)+1

, fori=3.
k= dU,n-1)+d(y,,n-1)

It is obvious that
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2k
[Ej . fori=1

n-3
a, :=min f, (dU,n-1))" =14 fori=2
1 1 K
[3n—_;j , fori=3
n_
and
4 fori=1
k(n-3)
d,, = max f,, (d(U,n-1))" = (:—_gj (n-2)<, fori=2
k(n-3)
(”—_;j (n—1), fori=3.

Theorem 1 [11] Let E(IT,(T,)*)(k>1,i=1,2,3) be the kth moment of IT.(T,) of a
molecular graph T, with tree structure of order n. Then for n>5,
(n-2)* <E(IT(T,)*) <42 (ae),
4409 < E(IT,(T,)*) < (n—2)"2, (ae),

(éS”(n—l)) <E(M,(T.)4) <24 (=1)""2, (ae).

3. MAINRESULTS

3.1 RATIO OF THE MULTIPLICATIVE ZAGREB INDICES

In this section, we obtain lower and upper bounds for the moments of the ratio of the
multiplicative Zagreb indices (I1,,IT, and I1;).

Theorem 2 Suppose

k
IT.(T.) .
IT.. (T)=El —/—2= |, 1 ,1,]=1,2,3.
|,J,k( n) {HJ(TH)J e J J
Then
T 2k(n-2)
n-2 1 n-2
Hl,Z,k(Tn)Z[(n_S)ZJ vnl,s,k(Tn)Zz_k —l )
(n=3)(n-1)?
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4 02
I, (021 T ()2 5]

3n-1)"? [3(n-)"”
I, (T,) 22 ( _2) » g, (T,) 22 (WJ :

Proof. It is obvious that for i =1,2,3, T1,(T,)* > IT,(T, ,)*. Then
_ I, (T,)
Hi,j,k(Tn)_E[ {HJ(T) |B, n
> E E H (Tn 1 —at |B
I1;(T,)
=g, e — = |B
i\ina Hj(Tn)k n-1
> 8, [1(T, ) E| —=— B,
: 1_Ij(Tn)
S>> E[ag_zni (T,)" E(;k | B“N
: H](Tn)
:aﬁ.zbﬁ.E[E( - " Bnlj} by, =I1;(T;)
: : H](Tn) I

_aHZbk 1 =,
[ j(Tn) J

where bHl = bHZ =1, bn3 = 2. By Jensen’s inequality [1],
1
VE(IT;(T,))

and proof is completed by Theorem 1.

Ijk(T) anZK

Corollary 1 Suppose m=n(m,neN) and

k
M, 0T = 2l | 103
- HJ(Tm)
Then
2k(n-2) K(n-2)
n-2 —k(m- 4
llk(Tm1T )= ( 3) 47 2)1 Hz,z,k(Tm’Tn)ZW’
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3(n-1))"? i
H3,3,k(Tm’Tn)2( ( )) (m_l) “ 2)1

n-2
2k(n-2)
I (T, T,) 2 (n_—gj (m—2)"*m2,

n—

2k (n-2)
I—[l,B,k (Tm an) > Zik(n—_ij (m _:I_)fk(mfz)1
4k(n—2)

I, (T T,) = 4", Hz,s,k(Tm’Tn) 2 W’

k(n-2)
I—[3,1,k (Tm ’Tn) 2> 2k (Sn__;) 47k(m72) 1

«[ 3(n-1) o _ pyk(m-2)
I, (T, Ty) 2 2 (—(n 2y J (m-2) .

With this approach, we can obtain the sharp lower bounds for different values of k .

Theorem 3 Suppose

1_[i(Tn)

k
, 1=, 1,)=1,2,3.
H,-(TH)J S

Hi,j,k (T,)= E(
Then

k
Hl,z,k (Tn) < 4k(n72), Hl,s,k (Tn) < (%) 4k(n72),

k(n-3)(n-2)
HZlk(Tn)S(n—_z) (n_z)k(rﬁ%

n-3
k k(n-3)(n-2)
1} (n-2 o
[Ty, (T,) < (E) (n——?:) (n-2)"?,
k(n-3)(n-2)
n-1
IT <2¢ = n—1)k-2.
3,l,k(Tn) (n_zj ( )
k(n-3)(n-2)
n-1
I <24 —= n—1)<"2,
3,2,k(Tn) (n—Z) ( )
Proof. We have [11]:
E(IT,(T,)" [ Byy) < dpy T (T, )", (ae),
E(IT,(T,)" [Byy) < dy T, (T, )" (ae),

E(L,(T,) 1B,) <d, TL,(T,.) . (2e).(2)
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Thus

g g L)
IT; jk\'n/ ™ E E = k Bn—l
I, (T ) [ (HJ(Tn) | j}

o]
I(T)

_ 1 K
- E[HJ (Tnfl)k E(HI (Tn) |Bn1)J

SdH_E Lfﬂ)i
CUIT (M)

SdH_E Lfﬂ)kk
: Hj(Tn—Z)

4, E E{&mﬂ
F o

_ 1
! Hj(Tn—Z)k
Sdé_E Lfﬂ)i
: Hj(Tn—Z)
S"'SdeZE Hi(Tz)k
(T,
= drnI;ZHi,j,k(Tz)f

E(H| (Tn—l)k | BnZ)J

where
I, 5 (T,) = I, (T,) = (1/2)k .

1—13,1,k (Tz) = H3,2,k (Tz) =2 )

I, (T,) =T, (T,) =1.
Now, the proof is completed by inequalities (2).

We can introduce the upper bounds similar to Corollary 1.
Corollary 2 Let i, j,k,1=1,2,3, n,p>5 and
Iy (THVTp) = E[

Let r,se[1,00] with 1/r +1/s =1. By Holder’s inequality,

I1,(T,) Hk(r,,)J

I;(T,) IL(T,) )

KAZEMI
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1 1
Hi'j‘k‘l (rn’Tp) < Hi,j,r (I-n)r 1_Ik,l,s (rp)s-
For example,
1 1 g
155, (Ts, Tg) <TLy,  (T5) "L, o (Tg)® < s

3.2 MODIFIED MULTIPLICATIVE SUM ZAGREB INDEX

For a path P,,
I1,(P,) = 256(n—3)+18, n>3
and for astar S,
I1,(S,)=n"*(n-1), n>2
Lemmal Let
x4y, +1) 0

f(valv""yx):(X+2)X+1H (X+y-)xyi

, XY, =123,...,n-3.

Then
f(1,1,...)<f(XY,.Y,)<f(n=3,n-3,..,n-3).
Proof. It is enough to note that the function f(x,Y,,...,Y,) is increasing in each y, and x.
Let vertex U is uniformly distributed on the vertex set {v,,v,,...,v, ,}. Then by definition
of the modified multiplicative sum Zagreb index,
I, (T,) = I, (T, )(dU,n-1)+2)* """
Y (d(U,n-1)+d(y;,n—1)+1)
X I d(U,n-1)d(y; ,n-1) J (3)
i=1 (dU,n-1)+d(y,,n-1)) i

where U is independent of B, , and node vy, is the neighborhood of the vertex U .

(d(U.n-1)+1)d(y;.n-1)

Theorem 4 Let E(IT,(T,)*) (k >1) be the k th moment of IT,(T,) of a molecular graph
T, with tree structure of order n. Then for T,\{P,,S,},

L w2
81 k(n-2) 1 (21 _3) -1 \K(-2)
2 — <E(IT,(T)4) <81 [j*0?| —=—1— , (ae).(4
EF R AR § (R BN D0
Proof. It is obvious that IT,(T, ;) is B, ,-measurable and the nth vertex is attached to any

previous vertex v of the already grown structure T, , with probability 1/(n—1) [8,10]. From
Lemma 1 and Equation (3),

E(I1,(T,)"|B,,) = E(I1,(T,)|d(v;,;n-1), j=1,.,n-1)
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4 ) k(d(v;,n-1)+1)
I Tn, k n-17%]j k(d(v,n-1)+1) (d (V-an_l)+2) !
> 4( 1) Z (d(vj,n—l)+2) j ) kd (v, ,n-1)
n-1 93 4 (d(Vjin_l)'i'l) J

zru(nly(%§), (ae)

k(n-2)
59 (81) |
2

since I1,(T,) = 2. We can obtain the upper bound from Lemma 1 and IT1,(T,) =81.

11, (Ti—l)

g 2k i (2i—5)i72 k(i-3)2 - iy (2] ),2 k(j-3)2
(&) <emun oy E95] oo G905

k
IT,(T. .
Theorem 5 Assume I1,;, = [4—”1)J ,for i>5 and k >1. Then almost everywhere,

k
Proof. Suppose Y,; :EIEILTUI))J for i>5. Then E(IT,;,) =E(Y,;Y4ik) - Now, from
4\

Theorem 4 and the law of the iterated expectation,

E(H4,i,k) = E(E(Y4,i,kY4,i+1,k |B)))
= E(Y4,i,kE(Y4,i+1,k [B;)), (ae.)

81)'
(2 et

2

2k
> (8_1 .
2
With this approach, we can obtain the upper bound.

n_2 2k(n-2)
(=2)

PR
1kH K(j-1) (21_3)J LY
@j-4"*

j=3

= (ﬂ' E(E(YM'k 1Bi1))

Corollary 3 We have

1_11,4,k (Tn) 2
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4*(0-2)
H2,4,k (Tn) > .
T i j-1 i-2)
Slknjk(il)(Mj
j=3 (2] _4)1—2
2k[3(”—1)jk‘”)
,,,(T,)= n-2 -
81kH k(j 1)((21 3)11j
j=3 (2] 4)1 2
ZK(SJ-JK(nZ) 2k(81jk(n2)
2 2
a2 VTCERE I, (T,) 2 W,

g1)"?
( j 4k(n 2)
43k(T)—W1 14k(|')_

k(n-2)(n-3)
n-2 N
24k(T)— (n 3) (n_z)k( 2)1

k(n-3)(n-2)
n-1 N
34k(T) ( ) (n_l)k( 2)1

-2
k(n-3)2(n-2)
@n-5"*
(2 n-— 6) n-3 ,

IT ‘ | 2 k(nfs)z(n 2)
n 5)n72

SZK n-1 k(n-2) (— )
A2k n) ( ) (2“ 6)”73

(2n—5)"* k(n-3)? (n-2)
Wj .

Iy (T,)< 2k(n _1)k(n2)2(

H4,3,k (Tn) <(n _:|_)k(n—2)2 (

since

81 K (2n—5)”’2 k(n-3)2
al'[4 = (?) , bl‘[4 =2, dH4 = (n_l)k(nz)(mj |

AlSO, 1—11,4,k (Tz) = H2,4,k (TZ) = (1/2)k ; H4,1,k (Tz) = H4,2,k (Tz) = 2k , H3,4,k (TZ) = H4,3,k (TZ)

k
Theorem 6 Let T be a finite stopping time for {L”)k,Bn} . Then
EILT)) ).

E[Lnkkjﬂ
E(H4 (TT) )

387

=1.
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Also, for 1 >0,

F{wpﬂﬂg

1
ws E(AL(T)) ) 4

Proof. We have

EELJK| B“j _E@L(1,)[B,.)

E(I1,(T,)") E(I1,(T,)")
< 4k1_[1(|-n—1)k (a e )
81 o
[2) E(H4 n—l) )
1_Il(Tnfl)k (ae)

CE(IL(T,,))
1_Il(Tn)k

—>0. Proof is completed
E(IL(T,)")

k
Then {L”)k Bn} is a supermartingale. Also,
EILT)Y) ).

by Doob’s supermartingale inequality [1].

Theorem 7 Suppose 5<m<n. For i=1,2,3,4 and k;,k, >1,
ET, () T1(T,)?)

TI. !

E(L(T,) 0, (T,) )

where a, =min f, (d U, n-1))".
Proof. If m<n, then IT,(T,,) <I1,(T,,) and B,, =B, ;. Then

E(IT, (T,) 1, (T,)'2) = E(E(TT, (T,) “T1,(T,)? | B,,))
= E(I1,(T,.)? E(1,(T,) | B,))
= E(I1, (T,,) ? E(E(TT, (T,) |B,,,) | B,.))
> E(IT(T,)? E(ay IT,(T, 1) " [B,))
> ay, E(IT,(T,,) 11, (T,.)'),

since by [1, Theorem 5.5.10],

E(E(T; (T,)|B,) [B,4) = E(L(T,) [B,) = E(E(IL(T,)[B,,) [B,) (ae.).
For example,

e =2 |

m-1
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Suppose 5<m<n and r,se[1,o0] with 1/r +1/s =1. Then for i =1,2,3,4 and k;,k, >1,

E(IT, (T,) 1T, (T,,)'?) < (E(I,(T,) )" (E(T, (T,)2)s, (ae)

This bound is an immediate consequence of Holder’s inequality. Let

m

I, (T,)= > _I;(T,),1<m<4. Thenfor r >1,

BT, (T,))" <m™ Y E(T,(T,)"

For example, E((IT,(T,) +T1,(T,))?) < 2(4"? + (m-2)*"?),
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