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The first variable Zagreb index of graph G  is defined as ܯଵ
ఒ(ܩ) =

 ∑ (ீ)ଶఒ௫∈௏(ݒ)݀ , where  is a real number and d(v) is the degree of 
vertex v. In this paper, some lower and upper bounds for the 
expected value and distribution function of this index in random 
increasing trees (recursive trees, plane-oriented recursive trees and 
binary increasing trees) are given.  
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1. INTRODUCTION  

The concept of the variable molecular descriptors was proposed as an alternative way of 
characterizing heteroatoms in molecules, but also to assess the structural differences, such 
as, for example, the relative role of carbon atoms of acyclic and cyclic parts in alkyl 
cycloalkanes. The idea behind the variable molecular descriptors is that the variables are 
determined during the regression so that the standard error of estimate for a studied 
property is as small as possible. Several molecular descriptors, have already been 
generalized in their variable forms, but here we will only pay attention to first Zagreb 
index. This index has been used to study molecular complexity, chirality, ZE-isomerism 
and hetero-systems. Overall, Zagreb indices exhibit a potential applicability for deriving 
multi-linear regression models [2]. 

The first variable Zagreb index of graph G  is defined by  
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where   is a real number and )(vd  is the degree of vertex v  (for example, see [1] for the 
case [0,1/2] ). 

There are several tree models, namely so called recursive trees, plane-oriented 
recursive trees (also known as non-uniform recursive trees or heap ordered trees) and 
binary increasing trees, which turned out to be appropriate in order to describe the 
behaviour of a lot of quantities in various applications. All the tree families mentioned 
above can be considered as so called increasing trees, i.e. labelled trees, where the nodes of 
a tree of size n  are labelled by distinct integers of the set }{1,2,...,n  in such a way that each 
sequence of labels along any path starting at the root is increasing. E. g., plane-oriented 
recursive trees are increasingly labelled ordered trees (= planted plane trees) and binary 
increasing trees are obtained from (unlabelled) d-ary trees via increasing labellings [2]. We 
can describe the tree evolution process which generates random trees (of arbitrary size n ) 
of grown trees. This description is a consequence of the considerations made in:  
Step 1: The process starts with the root labelled by 1. 
Step 1i : At step 1i  the node with label 1i  is attached to any previous node v  (with 
out-degree )(vd  ) of the already grown tree of size i  with probabilities  
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Since the structures of many molecules are tree like, our interest here is to study the 

first variable Zagreb index of increasing trees. Several other topological indices of random 
trees have been studied by many authors. We refer the reader to Kazemi [3, 4, 5] for the 
first Zagreb, eccentric connectivity index and second Zagreb indices, Kazemi and 
Meimondari for degree distance and Gutman index [6] and references therein. Our aim in 
this paper is to consider the expected value and distribution function of the first variable 
Zagreb index in random trees. In the following, we use the notation 

nR to denote the first 

variable Zagreb index of an increasing tree of size n  with a  R. 
 

2.  CASE {1}\2= N  

Let {1}\2= N  and 
nR  be the first variable Zagreb index of an increasing tree of size 

n . For 1=  (or 1/2= ),  
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Let nkd ,  denote the degree of node labeled k  in the random tree of size n . Considering the 

insertion of label n  at the n th stage, we obtain  
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is uniformly distributed on the set 1}{1,2,..., n . 
Now, let nF  be the sigma-field generated by the first n  stages of the increasing 

trees. By stochastic growth rule of the random increasing trees and definition of conditional 
expectation,  
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 As our first result, we prove the following theorem.  
 
Theorem 1  We have  
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Proof. We have  
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Now proof is completed by (2) since 0=1
R  and 2=2
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 and for a star nS ,  
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We use the notation D  to denote convergence in distribution. If nnUd ,  is the degree of 

a random node in a randomly chosen tree of size n , Xd D
nnU ,  with [7]  
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Thus  
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Theorem 2 For n  large enough,  
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Corollary 1 For 2=  in random recursive trees that reduce to the first Zagreb index, we 
have  

 1)
2
1(Li

2
1)(=)(

1

0=

2 







  j

j
n j

nnRE  

            1)
2
1(Li2)

2
1(Li1)(= 10 






  nn  

            4)1)(1(1=  nn  
            6,6= n  

since  



280                                                                                  MORADIAN, KAZEMI AND BEHZADI 

 

.
)(1

=)(Li     ,
1

=)(Li 210 z
zz

z
zz

   

Let n  be the maximum degree of any node in a random recursive tree. Szyma n ski [8] 
proved that  

 ,log2 nn   

for all but )1)!(( no  recursive trees on n  nodes. For a binary increasing trees, 3n .  
 
Theorem 3 i) For all but )1)!(( no  recursive trees on n  nodes,  
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Similarly, we can prove Part (ii).  
 

Theorem 4  For all increasing trees,  
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Theorem 5 Let )(=)( rRPrF nn   be the distribution function of 

nR , 1)2(> nr  and n  
be large enough. 
 i) For recursive trees,  
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where ZF  and WF  are the distribution functions of Z  and W , respectively. Now the proof 
is completed by (5).  
 
3. GENERAL CASE R   

Lemma 1  Let  xxxf 1)(=)( , where 1>x . Then )(xf  is decreasing (respectively 
increasing) for 1<<0   (respectively for 0<  or 1> ).  

 
Proof. It is enough to note that )(xf   is negative (respectively positive) for 1<<0   
(respectively for 0<  or 1> ).  
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Theorem 6  Let  nnnf 1)(=)( . 
 i) For 1<<0  ,  
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ii) For 0<  or 1> , the presented bounds in Part (i) should be changed by other.  
 

Proof. We have  
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where 12=(1) f  and  2)(1)(=2)(  nnnf . For Part (i), (1)<2)( fnf   and for 
Part (ii), 2)(<(1) nff . Now, proof is completed by Lemma 1.  
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