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In this paper, Kekulé structures of benzenoid chains are considered. 
It has been shown that the coefficients of a  ܤ௡(ݔ)  Morgan Voyce 
polynomial equal to the number of ݇–matchings (݉(ܩ, ݇)) of a 
path graph which has ܰ = 2݊ + 1 points. Furtermore, two relations 
are obtained between regularly zig–zag non-branched 
catacondensed benzenoid chains and Morgan–Voyce polynomials 
and between regularly zig−zag non branched catacondensed 
benzenoid chains and their corresponding caterpillar trees. 
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1. INTRODUCTION  

A benzenoid system is obtained by using the regular hexagons consecutively so that two 
hexagons are either disjoint or have a common edge [1]. An example of benzenoid chain is 
illustrated in Figure 1. 

 
  

Figure 1. A Benzenoid Chain. 
 

In connection with the benzenoid chains the ܣܮ–sequence is defined as an ordered 
ℎ–tuple (ℎ > 1) of the symbols ܮ and ܣ. The ݅–th symbol is ܮ if the ݅–th hexagon is of 
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modeܮଵ or ܮଶ. The ݅–th symbol is ܣ if the ݅–th hexagon is of mode ܣ. The definition of ܮଵ, 
 .modes of hexagons is clear from Figure 2ܣ ଶ andܮ

 
Figure 2. Illustration of ܮଵ, ܮଶ and ܣ modes of hexagons, respectively. 

 
For instance, the LA–sequence of the benzenoid chain in Figure 1 is 

 ଶ. Each perfect matching of aܮଶܣଷܮܣଶܮܣଷܮ or, in the abbreviated form ܮܮܣܣܮܮܮܣܮܮܣܮܮܮ
benzenoid system (if any exists) represents a Kekulé structure. The number of Kekulé 
structures of benzenoid chains is called its“ܭ number”. The ܭ–number of a benzenoid 
chain is calculated by its ܣܮ–sequence.  

Balaban and Tomescu coined the term isoarithmicity for the benzenoid chains 
which their K numbers are same [2]. It is denoted by 〈ݔଵ,ݔଶ, … ,  ௡〉 the class of isoarithmicݔ
benzenoid chains with the ܣܮ–sequence  

 ௫೙ܮܣ… ܣ௫మܮܣ௫భܮ
where ݊ ≥ 1, and ݔଵ ≥ 1, ௡ݔ ≥ 1, ௜ݔ ≥ 0   for ݅ = 2,3, … , ݊ − 1. For example isoarithmic 
class of the benzenoid chain which is depicted in Figure 1 is 〈3, 2, 3, 0, 2〉. 

Every benzenoid chain can be represented in this form. It is denoted by 
,ଶݔ,ଵݔ〉௡ܭ … , ,ଵݔ〉 ௡〉  the number of Kekulé structures of the chainݔ ,ଶݔ …  ௡〉.It is definedݔ,
for the initial terms of the K numbers such that ([1]) ܭ଴ = 〈ଵݔ〉ଵܭ,1 = 1 +  .ଵݔ
 
Theorem 1. If ݊ ≥ 2 then for arbitrary ݔଵ ≥ ௡ݔ   ,1 ≥ ௜ݔ   ,1 ≥ 0, (݅ = 2,3, … ,݊ − 1), the 
following recurrence relation holds [1] 

,ଶݔ,ଵݔ〉௡ܭ … , 〈௡ݔ = ௡ݔ) + ,ଶݔ,ଵݔ〉௡ିଵܭ(1 … , 〈௡ିଵݔ + ,ଶݔ,ଵݔ〉௡ିଶܭ …  .〈௡ିଶݔ,
 
2. THE HOSOYA INDEX AND MORGAN–VOYCE POLYNOMIALS 

The Hosoya or ܼ–index was defined by Hosoya in 1971 [3] and the Hosoya index of a 
graph ܩ is denoted by ܼ(ܩ). The ܼ(ܩ), is the total number of ݇–matchings which are the 
number of ݇ choosing from a graph ܩ such that the ݇ lines are non–adjacent where ܰ is the 
number of points.  
 
Definition 1. The number of ݇–matchings is denoted by ݉(ܩ, ݇) and the ܼ(ܩ) is defined 
as ܼ(ܩ) = ∑ ⌊ே/ଶ⌋(݇,ܩ)݉

௞ୀ଴  such that ݉(ܩ, 0) = 1 for any graph ܩ. 
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Theorem 2. The number of ݇–matchings of the path graph is calculated by the following 
equation [4] 

,ܩ)݉ ݇) = ൫ேି௞௞ ൯, for 0 ≤ ݇ ≤ ⌊ܰ/2⌋. 
 

Relations between topological indices and some orthogonal polynomials for 
example Hermite, Laguerre and Chebyshev polynomials were found by Hosoya ([5]). 
Another relation between the sextet polynomial of a hexagonal chain and the matching 
polynomial of a caterpillar tree was discovered by Gutman [6]. As a result of this paper, it 
has been shown that the ܭ–number of a hexagonal chain is equal to the Hosoya index of 
the corresponding caterpillar [7]. For instance, corresponding caterpillar tree of the 
hexagonal chain which is depicted in Figure 1 is on the below. 
 

 
 

Figure 3. The hexagonal chain in Figure 1 has 14 hexagons and 
             the corresponding caterpillar tree has 14 edges. 

 
The caterpillar tree of the hexagonal chain in Figure 3 is ܥହ(4, 3, 4, 1, 3).   

 
Definition 2. The Morgan–Voyce polynomials ܤ௡(ݔ) is defined by [8] as 

(ݔ)௡ܤ = ෍൬
݊ + ݅ + 1
݊ − ݅ ൰

௡

௜ୀ଴

 ௜ݔ

and the first five Morgan–Voyce polynomials are found from this equation like that  
(ݔ)଴ܤ = 1 

(ݔ)ଵܤ = ݔ + 2 
(ݔ)ଶܤ = ଶݔ + ݔ4 + 3 

(ݔ)ଷܤ = ଷݔ + ଶݔ6 + ݔ10 + 4 
(ݔ)ସܤ = ସݔ + ଷݔ8 + ଶݔ21 + ݔ20 + 5 . 

 
 

3. REGULARLY ZIG–ZAG NON−BRANCHED CATACONDENSED BENZENOIDS 

The Kekulé number of regularly zig–zag non-branched cata condensed benzenoids was 
found by He, He and Xie [9] by Peak–Valley matrix. 
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(a)  
 

(b)  

Figure 4. Dualist graph of a general non-branched cata–condensed benzenoids. 
 
In Figure 4, ܽ௜ ∈  (݅ = 1,2, … and ௜ܾ (ݏ ∈  (݅ = 1,2, … ′ݏ where (′ݏ =  for ݏ

Figure 4(a) and ݏ′ = ݏ + 1 for Figure 4(b). ܽ௜ + 1 and ௜ܾ + 1 represent the numbers of 
linearly condensed six–membered rings horizontally and diagonally, respectively. For the 
benzenoid shown in Figure 4(a) and 4(b), the Peak–Valley matrix is as follows. 

௡ܣ =

⎣
⎢
⎢
⎢
⎢
⎡
ଵݐ 1 0
1 ଶݐ 1
0 1 ଷݐ

0

0
⋱ 1 0
1 ݐ ିଵ 1
0 1 ݐ ⎦

⎥
⎥
⎥
⎥
⎤

 

where ݐ௜ = ቊ
ܾ௞ାଵ + 2, ݂݅ ݅ = ∑ ௝ܽ + 1௞

௝ୀ଴

2,                   ݂݅  ݅ ≠ ∑ ௝ܽ + 1௞
௝ୀ଴

, ݇ = 1,2, … , ;ݏ  ݅ = 1,2, … , . Here  is the 

number of peaks (or valleys) in a graph G. The Kekulé number of a graph ܩ is shown by 
݊ )(ܩ)௡ܭ = 1, … , ). 
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Figure 5. Simple binary regularly cata–condensed benzenoids. 

 
Lemma 1. From Figure 5, the ܭ–number of the graph G is calculated by the following 
tri−diagonal determinantal expression[9]:  
 

(ܩ)୬ܭ = ௡ܣݐ݁݀ =
ተ

ተ

ܾ + 2 1 0
1 ܾ + 2 1
0 1 ܾ + 2

0

0
⋱ 1 0
1 ܾ + 2 1
0 1 ܾ + 2

ተ

ተ
. 

The order of the above determinant is ݏ + 1, where ݏ is the repeat times of horizontal linear 
segments on the graphܩ. 
 

4. CONTINUANTS AND CATERPILLAR TREES 

Lemma 2. If ܪ is a hexagonal chain whose ܣܮ–sequence is ܮ௫భܮܣ௫మܣ…  ,௫೙ܮܣ௫೙షభܮ
then the number (ܪ)ܭ of its Kekulé structures is equal to the ܼ–index of the caterpillar 
tree ܥ௡(ݔଵ,ݔଶ, … ,  .௡)[7]ݔ

 
If it is written (ܪ)ܥ for caterpillar tree of a ܪ hexagonal chain, Lemma 2 is 

equivalent to the equality (ܪ)ܭ = Z((ܪ)ܥ). 
 
Definition 3.The continuants (or continuant polynomials) are introduced by Euler [10] 
as ܮ௡(ݔଵ,ݔଶ, … (௡ݔ, = ,ଶݔ,ଵݔ)௡ିଵܮ௡ݔ … , (௡ିଵݔ + ,ଶݔ,ଵݔ)௡ିଶܮ …  ௡ିଶ) with initialݔ,
conditions ܮ଴() = (ଵݔ)ଵܮ ,1 = (ଶݔ,ଵݔ)ଶܮ  ଵ  andݔ  = ଶݔଵݔ + 1. 
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From this it is shown that the ܼ–index of the caterpillar trees coincides with Euler ’s 
continuant like the following lemma. 
 
Lemma 3.  ܼ൫ܥ௡(ݔଵ, ,ଶݔ … ௡)൯ݔ, = ,ଶݔ,ଵݔ)௡ܮ … ,  .௡)[7]ݔ

 
5. MAIN RESULTS 

Theorem 3. The coefficients of a ܤ௡(ݔ) Morgan–Voyce polynomial are equal to the 
number of ݇–matchings (݉(ܩ, ݇)) of a path graph which has ܰ = 2݊ + 1 points. 
 
Proof. We denote the coefficients of Morgan–Voyce polynomials with  

൯(ݔ)௡ܤ൫ܥ = ൬
݊ + ݅ + 1
݊ − ݅ ൰ 

such that 0 ≤ ݅ ≤ ݊ and we take the point number of the path graph ܰ = 2݊ + 1. The 
number of ݇–matchings of a path graph for 0 ≤ ݇ ≤ ⌊ܰ/2⌋ is 

,ܩ)݉ ݇) = ൬
ܰ − ݇
݇ ൰ 

and ⌊ܰ/2⌋ = ⌊(2݊ + 1)/2⌋ = ݊ by the definition of the Hosoya index. Now we 
demonstrate the coefficients of the Morgan–Voyce polynomials in combinatorial form 
with respectively for 0 ≤ ݅ ≤ ݊ 

൯(ݔ)௡ܤ൫ܥ = ൬
݊ + 1
݊ ൰ , ൬

݊ + 2
݊ − 1൰ , … , ൬

2݊
1 ൰ , ൬

2݊ + 1
0 ൰ 

and ݉(ܩ,݇) = ൫ேି௞௞ ൯ for 0 ≤ ݇ ≤ ⌊ܰ/2⌋ = ݊ with respectively 

,ܩ)݉ ݇) = ൬
2݊ + 1

0 ൰ , ൬
2݊
1 ൰ , … , ൬

݊ + 2
݊ − 1൰ , ൬

݊ + 1
݊ ൰ . 

It is clear that ܥ൫ܤ௡(ݔ)൯ and ݉(ܩ, ݇) are same in reverse order. From this we say for 
every ݊௧௛ degree Morgan–Voyce polynomial there is a path graph ( ேܲ) which has 
ܰ = 2݊ + 1 points such that the coefficients of the Morgan–Voyce polynomials equal 
to the number of ݇–matchings of ேܲ.  
 
Example 1. We show an application of the previous theorem for the first three 
Morgan–Voyce polynomials. For ܤ଴(ݔ), ܥ൫ܤ଴(ݔ)൯ = 1 equals to ݉(ܩ, ݇) for ܰ = 2 ×
0 + 1 = 1. For ܤଵ(ݔ), ܥ൫ܤଵ(ݔ)൯ = 1, 2  equal to ݉(ܩ, ݇) for ܰ = 2 × 1 + 1 = 3.  
For ܤଶ(ݔ),ܥ൫ܤଶ(ݔ)൯ = 1, 4, 3  equal to ݉(ܩ, ݇) for ܰ = 2 × 2 + 1 = 5. 
 
Lemma 4. If  ܾଵ + 1 = ܾଶ + 1 = ⋯ = ܾ௦ + 1 = ܾ + 1  (numbers of the regular 
hexagons on diagonal wise are same) like in Figure 5 and we take ݔ instead of ௜ܾ, then 
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(the right equation is used to express many properties of the Morgan–Voyce 
polynomials like in [8]) 

(ܩ)௡ܭ = ௡ܣݐ݁݀ =  .(ݔ)௡ܤ
Proof. 

(x)3B410x26x3x
2x10

12x1
012x

(G)3K

(x)2B34x2x12)2)(x(x
2x1

12x
(G)2K

(x)1B2x2x(G)1K

















 

and by the determinant of the tri−diagonal matrix in Lemma 1, 
(ܩ)௡ܭ = (ݔ)௡ܤ = ݔ) + −(ݔ)௡ିଵܤ(2  .(ݔ)௡ିଶܤ

In Lemma 1, the (݊) indice on the notatin ܭ௡ is the number of the repetition of the 
diagonal hexagons. We also take the number of the hexagons ௜ܾ + 1 on diagonal wise 
like the previous lemma. For Figure 5, ܾଵ + 1 = ܾଶ + 1 = ⋯ = ܾ௦ + 1 = ܾ + 1 and its 
corresponding caterpillar tree is ܥଶ௡(ܾ + 1, 1,ܾ, 1, … ,ܾ, 1). 

 
There is a relation between the ܭ–number of the hexagonal chain in Figure 5 and 

ܼ–index of its corresponding caterpillar tree as noted in the next theorem. 
 
Theorem 4. ܭ௡(ܩ) = ܼ൫ܥଶ௡(ܩ)൯. 
 
Proof. Induct on n. For ݊ = 1, (ܩ)ଵܭ = ܼ൫ܥଶ(ܾ + 1, 1)൯ = ܾ + 2, as desired. We 
assume that the equality is true for ݊ ≤ ݇ and we will show that it is true for ݊ = ݇ + 1. 
This means 

(ܩ)௞ାଵܭ = ܼ൫ܥଶ௞ାଶ(ܾ + 1, 1,ܾ, 1, … , ܾ, 1)൯. 
By assumption  

(ܩ)௞ܭ = ܼ൫ܥଶ௞(ܾ + 1, 1, ܾ, 1, … ,ܾ, 1)൯ 
and  

(ܩ)௞ିଵܭ = ܼ൫ܥଶ௞ିଶ(ܾ + 1, 1,ܾ, 1, … , ܾ, 1)൯. 
By Lemma 1, 

))(())(())((
))(())(())(())((

))(())](())(([2))((
))(())(()2(

)()()2()(

22212

2212122

2222122

222
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
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


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This complete the proof. 
 
Example 2. We calculate the Kekulé number of simple binary regularly catacondensed 
benzenoid in Figure 5 by two ways mentioned in the Theorem 4. The matrix form of 
 number of the chain shown in Figure 5 is–ܭ

(ܩ)ଷܭ = ൥
4 1 0
1 4 1
0 1 4

൩ 

and ܭଷ(ܩ) = ܣݐ݁݀ = 56. Now we use the corresponding caterpillar tree of the 
hexagonal chain as the follows: 

 
Figure 6. The hexagonal chain in Figure 5 has 9 hexagons and the corresponding 
caterpillar  tree has 9 edges.  
 

This caterpillar tree is denoted by ܥ଺(3, 1, 2, 1, 2, 1) and  ܼ(ܥ଺(3, 1, 2, 1, 2, 1) = 56. 
So that ܭଷ(ܩ) = ,଺(3ܥ)ܼ 1, 2, 1, 2, 1). 
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