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Let  G=(V,E)  be a   simple  connected  graph  with  vertex  set  V     and 
 edge  set    E. The Szeged index  of   G is defined by 

,)|()|()(   Euve GevnGeunGSz
 
where nu(e|G) is the number 

of vertices of  G  closer to  u than    v and nv(e|G) can be defined in a 
similar way. Let     S be a   set  of  size n  8 and   V  be  the  set  of  all 
 subsets  of   S  of  size  3.  We  define  three  types  of  intersection  graphs 
 with  vertex  set V. These graphs are denoted by Gi(n), i=0,1,2    and 
we will find their  Szeged indices. 
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1. INTRODUCTION  

Let  G = (V,E)  be a  simple   graph  with  vertex  set V  and  edge  set     E. An  automorphism  of     G  is 
a   one–to–one mapping   :V V    that  preserves  adjacency of vertices in     G. The  distance 
 between two  vertices     u and   v    is  the  length  of  a  shortest  path  from     u to v and is denoted by 
d(u,v). A function f from the set of all graphs into real numbers is called a graph invariant 
if and only if G  H implies that f(G) = f(H). A graph invariant is said to be distance−based 
if it can be can defined by distance function d(−,−). A graph invariant applicable in 
chemistry is called a topological index. 

In  recent  research  in  mathematical  chemistry,  distance–based  graph  invariants  are 
 of particular  interest.   One  of  the  oldest  descriptors  concerned  with  the  molecular  graph  is 
 the  Wiener index, which was  proposed  by   Wiener [8].    The  definition  of  the Wiener  index  in 
 terms  of  distances  between  vertices  of a   graph  is  due  to  Hosoya ]6]. 

The Szeged index [4,5,7]  is a   topological  index  closely  related  to  the  the  Wiener 
 index  and  coincides  with  the  Wiener  index  in  the  case  when  the  graph  is a   tree.  For  the 
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 basic  definition of  the  Szeged  index  of  graph , let    G = (V,E)  be a   connected  simple  graph. 
 Let e uv     be  an  edge  of    G.  We  define  two  subsets  of  vertices  of   G  as  follows: 

( | ) { | ( , ) ( , )}
( | ) { | ( , ) ( , )}

u

v

N e G w V d w u d w v
N e G w V d w v d w u

  

  
 

Let ( | ) | ( | ) |u un e G N e G    and   ( | ) | ( | ) |v vn e G N e G . The Szeged index of the 
graph    G  is  defined  by  the  following  formula:  

 


Euve vu GenGenGSz )|()|()(  

  We see that the Szeged index is a sum of edge–contribution for the edge  e uv  of 
 the  graph    G,  we  set                | |u vsz e n e G n e G , hence  


Ee

eszGSz ).()(  

Let    denote  the  automorphism  group  of  the  graph  G.  Then    acts  as a  
 permutation  group  on  the  vertex  set   V  of     G. If    e uv   is  an  edge  of   G  and ,       then by 

defining ,e u v    we observe  that      acts  on  the  set     E  of  edges  of    G. I f    acts 
 transitively  on   V,  then     G  is  called a   vertex–transitive  graph  and  if  it  acts  transitively  o n  E , 
then    G  is  called  an  edge–transitive  graph.  We  refer  the  reader  to  the  book ]2]  for  further 
reading  about  permutation  groups.  

In [1],  the  case   of    edge–transitive  graph  is  studied.  In  this  case,  the  edge–
distribution  at each edge  is  the  same , i.e.,  ( ) ( )sz e sz e   for  all  edges     e  and e'   of     G  holds, 

 hence    | |Sz G E sz e       for a   single  edge  of   G  holds. The  above  situation  is  also  studied 

 in [9]. 
 
2. PRELIMINARY RESULTS 

In this paper we are concerned with the graphs on triples. Let  S  be a   set  of  size     n  where     n  is 
a   suitable  natural  number.  Let   V  be  the  set  of  all  the  3–element  subsets  of     S.  The graph 
Gi,i= 0, 1, 2, called  intersection  graphs, are  defined  as  , ,iG V E    where     V  is  the  set  of 

 vertices  of     G  and  two  vertices  are  joined  by  an  edge  if  and  only  if  they  intersect  in   i

 elements . It is clear that | |
3
n

V  
  
   

and  the  size  of  each   ; 0,1, 2,iE i     is 
3 3

,3
3 2

n n    
   
     

and

  3 3n    respectively,  it  is  worth  mentioning  that  the  Weiner  indices  of  the  graphs 

  ; 0,1, 2,iG i    were  computed  in [3]. 
 
Lemma 2.1.  Each of the graphs   ; 0,1,2,iG i    is  edge–transitive.  
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Proof. By [3],  the  automorphism  graph  of  each  graph    ; 0,1, 2,iG i   has a subgroup 

isomorphic to the symmetric group S        n. Let e uv  and  e u v    be two edges of   ; 0,1, 2.iG i 
Then | | | | .u v i u v      

Case 1. 0.i   In this case we may take         1, 2,3 , 4,5,6 ,u v 

{1,2 ,3}, {4 ,5 ,6 }u v            where  {1,2 , ,6 } {1,2, ,6}          .The  permutation  

1 2 3 4 5 6
1 2 3 4 5 6

Sn
    





 
 
   

take e to .e  

Case 2. 1.i    In  this  case  we  may  take u = {1,2,3}, v = {1,4,5}, u = {1, 2, 3}, v= 

{1, 4, 5}   and choose 
1 2 3 4

2 3
5
51 4 nS

  
 

   
 which takes    e to e . 

Case 3. 2.i    In  this  case  we  may  choose u = {1,2,3}, v = {1,2,4}, u = {1, 2, 3}, 

v= {1, 2, 4} and  in  this  case  
2 3

1 2 3 4
1 4 nS

  
 

   
                                   takes    e to e .                                ■ 

 
We have the following result from [3]  that  will  be  used. 

 
Result 2.1. Let    u  and    v  be  two  vertices  of   ; 0,1, 2.iG i       Then   ( , ) 2d u v   unless 2i    where 
  ( , ) 3d u v    also  occurs. 

 
3. COMPUTATION OF THE SZEGED INDEX 

Now  because  of Lemma 2.1, we have Sz(Gi) = |Ei|sz(e), i = 0, 1, 2, where  sz(e) = 
nu(e|Gi)nv(e|Gi). By  definition  we  have nu(e|Gi) = |{ w  V | d(w,u) < d(w,v)}|.  By the above 
result d(w,v) = 0, 1, 2  in  the  case   G1   and   G2. 

Case 1.  , 0d w v    is  impossible. 

Case 2. If    , 1,d w v   then  , 0d w v        implying      .w u  

Case 3. If    , 2,d w v   then       , 0d w v   or 1. If    ,   w u   then     , 1d u v   a 

contradiction, hence  , 1.d w u   We conclude that  

( | ) 1 |{ | ( , ) 1}| .un e G v w V d w u      

By  symmetry  we  have ( | ) ( | ).v un e G n e G  
 
Corollary 3.1. The Szeged index of  0G   and 1G  are  as  follows:   
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2

0

2

1

3 6 6
( ) 1 3 3

3 2 1

3 5 5
( ) 3 1 2 2

2 2 1

n n n
Sz G

n n n
Sz G

         
        
      

         
        

      

 

Proof.   According to what we proved earlier  ( ) | | ( ),i iSz G E sz e  where e uv       is a   fixed 

edge  of     , 0,1.iG i    But 

    
 

2

2

( ) ( | ) ( | ) ( | )

1 |{ | ( , ) 1} |
u v usz e n e G n e G n e G

v w V d w u

 

    
 

 Therefore we must find the number of vertices  w v  of   V   with  distance 1   from   u  . 
    Case 1 .      0i  .   In  this  case  we  may  take    1,{ 2,3}u   and   4,5,6v   , the vertex  w  

 should  be  of  distance 2   from   v  ,  hence  should  meet    v  and     .w u  If   w   meets  v  in  one 
 element  we  have  3/2(n − 6)(n − 7) choices for it and if it meets    v  in 2   elements  again  we 
 have     3(n – 6) choices for    it and the formula for   0Sz G   is  obtained  as  above.  

  Case 2.   1i  .  In  this  case  we  may  choose    1, 2,3 ., 1,4,5u v     we  have 

( , ) 2d w v      , hence   w v    or        2   ,w v   but     1    .  w u   

 
If     ,w v   then we have (n – 5)(n – 6)

 
choices  for     W. If   |    |  2,w v  then  if   1   ,w we 

must have  {1,4, }w x  or  1,5, ,w y    hence  the  number  of  choices  for     w  is 2(n – 5)   .For  

1 w  we  don't  obtain a   possibility  for     w.  Therefore  1Sz G   is  as  above.                              ■ 

 
To calculate the Szeged index of 2 G   we  must  calculate  the  size  of  the  set    

( | ) { | ( , ) ( , )}uN e G w V d w u d w v       .In  this  case  , 3d w v     may  occur and    , 1d w u 

 or 2.  If   , 1d w u  , then  , 2d w u  , a contradiction. Therefore  , 2,d w u  i.e there  is a  

 vertex     x   such  that    , 1d w x  . If  we  set 1 { | ( , ) 1}A v w V d w u    and  

2 { | ( , ) 2}A w V d w u    then  we  must  find  the  sizes  of 1A      and   2A . 
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vu

x w  
Let  {1,2,3} , {1,2,4}u v    and  find   1| |A . 

 
In this case  , 2,d w v    hence   | | 2.w v   If   ,w v   then  there  is  no  possibility  for   .w  
 If | | 1,w v     then     {1,3, , 2,3, },w x x   and hence  the  following  corollary  is  proved. There 

 are 2(n – 4) possibilities for w  and |A1| = 2(n – 4).   To find 2| |A    we  may  assume  again   

     1, 2,3 , 1,2,  .4u v   

             
The number of vertices  x  is 2(n – 4).  Now  having  chosen x  the  number  of w  with 

 distance 1   from x  is 2(n – 5) . 

 
Corollary 3.2. For the Szeged index of  2G   we  have  

 
2

2

4 4 5
( ) 3( 3) 1 2

1 1 1
.4

n n n
Sz G n

        
        

     
 

REFERENCES 

1. M. R. Darafsheh , Computation of topological indices of some graphs, Acta.  Appl. 
 Math. 110 (2010)   1225–1235 . 

2. J. D. Dixon  and  B.  Mortimer, Permutation Groups ,  Springer–Verley ,   NewYork, 
 1996       . 



180                                                                                DARAFSHEH, MODABERNIA AND NAMDARI 

3. M. Ghorbani ,        Computing the Wiener index of graphs on triples   ,  Creat .  Math . 
 Inform . 24 (2015) no.1 49–52. 

4. I. Gutman, A formula for the Wiener number of trees and its extension to graphs 
containing cyclic, Graph Theory Notes NY. 27 (1994) 9–15.  

5.  I. Gutman    and  A. A.  Dobrynin,  The Szeged index-asuccess story ,   Graph Theory 
Notes   NY .  34 (1998)  37–44    .  

6. H. Hosoya, Topological Index. A Newly Proposed Quantity Characterizing the 
Topological Nature of Structural Isomers of Saturated Hydrocarbons, Bull. Chem. 
Soc. Japan. 44 (1971) 2332–2339. 

7. P. V. Khadikar, N. V. Deshpande, P. P. Kale , A. Dobrinin, I. Gutman and G. 
Domotor, The Szeged index and analogy with the Wiener index ,  J. Chem .  Inf. 
Comput. Sci .  35 (1995)   547–550 .   

8. H. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 
69 (1947) 17–20. 

9. J. Zerovnik , Szeged index of symmetric graphs ,  J. Chem. Inf. Comput. Sci  . 39 
(1999)   77–80 . 


