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In the present paper, we develop a modified pseudo spectral scheme 
for solving an optimal control problem which is governed by a 
switched dynamical system. Many real–world processes such as 
chemical processes, automotive systems and manufacturing 
processes can be modeled as such systems. For this purpose, we 
replace the problem with an alternative optimal control problem in 
which the switching times appear as unknown parameters. Using the 
Legendre–Gauss–Lobatto quadrature and the corresponding 
differentiation matrix, the alternative problem is discretized to a 
nonlinear programming problem. At last, we examine three 
examples in order to illustrate the efficiency of the proposed 
method. 
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1. INTRODUCTION  

It is well known that pseudospectral (PS) methods are powerful methods for the numerical 
solution of differential equations. In fact, they arose from spectral methods which were 
traditionally used to solve fluid dynamics problems [1, 2]. They can often achieve ten digits 
of accuracy where a finite difference scheme or a finite element method would get two or 
three [3]. The key point in PS methods is that they avoid the poor behavior of the classical 
polynomial interpolation methods by removing the restriction to equally spaced 
interpolation points. 

The variational method of optimal control theory, which typically consists of the 
calculus of variations and Pontryagin’s methods, can be used to derive a set of necessary 
conditions that must be satisfied by an optimal control law and its associated state–control 
equations [4, 5]. These necessary conditions of optimality lead to a generally nonlinear 
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two–point boundary value problem that must be solved to determine the explicit expression 
for the optimal control. Except in some special cases, the solution of this two–point 
boundary value problem is difficult and not practical to obtain. 
Various alternative computational techniques for optimal control problems have been 
developed in the literature. The techniques are basically of three types: parameterization on 
both state and control [6, 7, 8], parameterization on control only [9, 10] and 
nonparameterization [11, 12, 13]. As a technique of the first type, PS methods can be 
interpreted as direct transcription methods for discretizing a continuous optimal control 
problem into a nonlinear programming (NLP) problem [14, 15, 16, 17, 18, 19]. The 
resulting NLP problem can be solved numerically by the well developed algorithms [20, 
21]. 

Although PS methods enjoy many nice properties, but their use in solving problems 
with nonsmooth solutions or problems with switches may cause major difficulties. The 
reason lies in the famous Gibbs phenomenon which happens when a nonsmooth function is 
approximated by means of a finite number of smooth functions [2]. In [22], the authors 
developed the method of PS knotting in order to address this issue. In fact, they introduced 
the concepts of hard and soft knots to eliminate the mentioned difficulties. 

The switched systems are a particular class of hybrid systems. The hybrid systems 
arise in varied contexts in chemical processes, automotive engine control, traffic control, 
and manufacturing processes, etc. The abundance of hybrid phenomena in many 
engineering systems in general, and in the chemical process industries in particular has 
fostered a large and growing body of research work in this area [23, 24, 25, 26, 27, 28, 29, 
30]. In [31], the authors discussed important hybrid aspects of chemical processing plants. 
Recently, optimal control of switched systems arising in fermentation processes has been 
studied in [32]. A hybrid system consists of several subsystems and a switching law, where 
the switching law is determined by a switching sequence and a set of switching times. At 
each time instant, only one subsystem is active. A hybrid system can be described by a 
differential inclusion of the form  
 

 ,},{1,2,:))(),(,()( Mvtutxtftx v                                       (1)  
 
where ,],[ 0 fttt  (ݐ)ݔ  ∈ ℝ௡, (ݐ)ݑ ∈ ℝ௠and for each },{1,2, Mv  , ௩݂:ℝ × ℝ௡ × ℝ௠ →

ℝ௡ , is continuously differentiable with respect to its arguments. A switching law   for 
system (1) is defined as )),(,),,(),,((= 111100  KK ititit  , where  <1 K , 

fK tttt  110  , and },{1,2, Mik   for 1,0,1,= Kk  . Note here 11 ,, Ktt   are 

the switching instants. An optimal control of such a system involves finding a control )(tu , 
and a switching law   such that the corresponding state trajectory subject to the dynamical 
system (1) departs from a given initial state and minimize a given cost functional. In [33], a 
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method which is based on parameterization of the switching instants is proposed for this 
kind of optimal control problems. 

In this paper, we investigate a modified Legendre PS scheme in order to explore 
accurate and efficient solutions of optimal control problems for switched systems. Here, we 
consider the optimal control problems in which a prespecified sequence of active 
subsystems is given. In order to explore numerical solutions of such problems, we need to 
seek the solutions of both the optimal switching instants and the optimal piecewise input. 
The rest of this paper is organized as follows. The problem statement is given in Section 2. 
In Section 3, we describe the preliminaries for subsequent development. The present 
method is proposed in Section 4. Then, three examples are provided in Section 5 to 
illustrate the efficiency of the proposed method. Conclusions are presented in Section 6. 
 
2. PROBLEM STATEMENT 

We consider switched systems defined on the fixed time interval ],[ 0 ftt  with 1K  

switches, consisting of the subsystems  
)2(,,1,2,=),,[)),(),((=)( 1 Kkttttutxftx kkk   

with initial conditions  
)3(,=)( 00 xtx  

 

where (ݐ)ݔ = ,(ݐ)ଵݔ) … ((ݐ)௡ݔ, ∈ ℝ௡ is the state function and (ݐ)ݑ = ,(ݐ)ଵݑ) … , ((ݐ)௠ݑ ∈
ℝ௠ is the corresponding control function. Also, ௞݂:ℝ௡ × ℝ௠ → ℝ௡ , Kk ,1,2,=  , are 
given functions. We assume that the switching sequence is preassigned, such that  

)4(,=110 fKK ttttt    

where the switching times 11 ,, Ktt   are decision variables. Our objective is to find a 
piecewise continuous function )(tu  and switching instants 11 ,, Ktt   subject to the 
condition (4) for the switched system (2) and (3) such that the cost functional  

)5())(),(())((=
0

dttutxgtxJ
ft

tf   

is minimized. It is noted that the considered problem is an optimal control problem in Bolza 
form. Also, the vector functions  ௞݂:ℝ௡ ×ℝ௠ → ℝ௡, Kk ,1,2,=  , and the scalar 
functions ݃:ℝ௡ ×ℝ௠ → ℝ and  ߶:ℝ௡ → ℝ, are assumed to be smooth with respect to all 
their arguments. 
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3. PRELIMINARIES 

Let N <<< 10   be the Legendre–Gauss–Lobatto (LGL) nodes where 1=0  , 1=N  

and 11 ,, N   are the roots of )(NP . Here )(NP  is the derivative of the N –th order 

Legendre polynomial )(NP . In other words, the LGL points N ,,, 10   are the 1N  

roots of )()(1 2  NP . The reader is referred to [1, 34] for details. 
Let )(th  be a continuous real function which is defined on 1,1][ . The Lagrange 

interpolating polynomial of degree N  interpolates the function )(th  at the points 

N ,,, 10  , as  

).()()(
0=

 jj

N

j
Lhh                                               (6) 

Here for Nj ,0,1,=  , )(jL  denotes the Lagrange polynomial of degree N  

corresponding to the point j , defined by  

.=)(
,0= ij

i
N

jii
jL








 

Note that the Lagrange polynomials satisfy in the Kronecker property  

.
0,

=1,
=)(




 ij
ij

L ij   

In order to approximate the derivative of )(th  at the points i , Ni ,0,1,=  , the 
interpolation formula (6) is differentiated yielding  

),()(
0=

jij

N

j
i hdh                                                    (7) 

where )(= ijij Ld  . The 1)(1)(  NN  matrix ][= ijdD  is the so–called derivative 

matrix. According to [1]  

.

0,

==,
4

1)(

0==,
4

1)(

,1
)(
)(

=
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




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












otherwise

NjiNN

jiNN

ji
P
P

d

jijN

iN

ij




 

Furthermore, for approximating the definite integral of )(th  on 1,1][ , the LGL 
quadrature rule is used. According to this quadrature rule, the definite integral is replaced 
by a summation, in which the values of )(th  at the LGL points are utilized, as  
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),()(
0=

1

1 jj

N

j
hwdh   


                                                 (8) 

 where jw , Nj ,0,1,=  , are the LGL weights, corresponding to the LGL points j , 

Nj ,0,1,=  , given by  

  .,0,1,=,
)(

1
1)(

2= 2 Nj
PNN

w
jN

j 





 

 
4. PROPOSED METHOD 

We suppose that in the problem stated in the Eqs. (2)–(5), the switching sequence is 
preassigned and 11 ,, Ktt   are the corresponding unknown switching times for which the 
condition (4) holds. 

We denote the restriction of vector functions )(tx  and )(tu  to the k –th subinterval 

),[ 1 kk tt   by )(txk  and )(tu k , respectively. According to these notations, the dynamic 
subsystems in Eq. (2) are expressed as  

                ,,1,=,<)),(),((=)( 1 Kkttttutxftx kk
kk

k
k                                  (9) 

  

         
.,2,=),(lim=)( 1

1
1 Kktxtx k

ktt
k

k 




                                                    (10) 

Note that in Eq. (10), the continuity constraints are added in order to guarantee the 
continuity of state functions. Accordingly, the cost functional (5) reformulated as  

,))(),(())((=
11=

dttutxgtxJ kkkt

kt

K

k
f

K 


                                           (11) 

 and the initial conditions (3) restated as  
.=)( 00

1 xtx                                                                                 (12) 
To apply the approximations described in the previous section, we must transfer 

each subinterval to the interval 1,1][ . For this purpose, we use the transformation formula 

1

1 )(2=







kk

kk

tt
ttt  in the k –th subinterval ),[ 1 kk tt  . In this respect, the problem is restated 

in the following alternative form:  

 duxgttxJ kkkk
K

k

K ))(),((
2

(1))(=min
1

1
1

1=
 

 





 

                               (13) 

    ,,1,=)),(),((
2

=)(.. 1 Kkuxfttxts kk
k

kkk  





                                           (14) 

        ,,2,=(1),=1)( 1 Kkxx kk                                                               (15) 
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 .=1)( 0
1 xx                                                                                  (16) 

The alternative problem (13)–(16) provides us with some advantage, namely that it 
no longer has varying switching instants. In fact, the switching instants are considered as 
parameters in the alternative problem. 

It has to be noted that for Kk ,1,=  , the components of vector functions )(kx  

and )(ku  are smooth on 1,1][  and then can be expanded in terms of Lagrange basis 
functions according to Eq. (6). Therefore, using the formula (8), the performance index J  
in Eq. (13) is approximated as  

,),(
2

)( )()(

0=

1

=1

)(
j

k
j

k
j

N

j

kk
K

k

K
N wUXgttXJ  






 

                                             (17) 

where )(k
jX  and )(k

jU  are vectors in ℝ௡ and ℝ௠, respectively, and defined by  

.,1,=,,0,1,=),(=),(= )()( KkNjuUxX j
kk

jj
kk

j   

Also, using the formula (7), the alternative dynamical systems (14) are approximated by  

,,1,=0,=
2

)(1)( KkFttXD kkkk 





 

                             (18) 

where )(kX  and )(kF  are nN 1)(  matrices, respectively, defined by  
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Furthermore, the continuity constraints (15) and the initial conditions (16), respectively, are 
stated as  

,,2,=0,=1)()(
0 KkXX k

N
k                                  (19) 

and  
.= 0

(1)
0 xX                                                        (20) 

We also assume that no two endpoints of subintervals coincide. Then, for a small given 
0> , we add the extra constraints  

 .,1,=,>1 Kktt kk                                           (21) 
In summary, the alternative optimal control (13)–(16) is discretized to the following NLP 
problem: Find vectors )(k

jX , )(k
jU , Nj ,0,1,=  , Kk ,1,=   and the parameters kt , 

1,1,= Kk   to minimize the expression (17) subject to the constraints (18)–(21). 
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The relations between the solutions of obtained NLP problem and the solutions of 
alternative problem (13)–(16) are given by  

,,1,=),()( )(

0=

)( KkLXx j
k

j

N

j

k    

and  

.,1,=),()( )(

0=

)( KkLUu j
k

j

N

j

k  
 

 
5. ILLUSTRATIVE EXAMPLES 
 
In this section, we consider three examples to illustrate the efficiency of proposed method. 
Here, we consider the numerical examples given in [33]. According to the present method, 
each example in modeled using the mathematical software package Maple 17 and the 
resulting NLP problems are solved by the command NLPSolve. 

 
Example 1. Consider a switched system consisting of nonlinear subsystems 
 

.
)(cos)()(=)(
)(sin)()(=)(

:3

,
)(cos)()(=)(

)(sin)()(=)(
:2

,
)(cos)()(=)(
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:1
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
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txtutxtx
txtutxtx
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txtutxtx
txtutxtx

subsystem

txtutxtx
txtutxtx

subsystem













 

 
Assume that 0=0t , 3=ft  and the system switches at 1= tt  from subsystem 1 to 2 and at 

2= tt  from subsystem 2 to 3 ( 30 21  tt ). The initial conditions are 2=(0)1x  and 
3=(0)2x . We want to find optimal switching instants 1t , 2t  and an optimal input )(tu  such 

that the cost functional  

dttutxtxxxJ )](1))((1))([(
2
11)(3)(

2
11)(3)(

2
1= 22

2
2

1

3

0

2
2

2
1    

is minimized.  
In Table 1, we listed the results of optimal switching instants 1t , 2t  and optimal cost 

J  obtained by the present method with 3=K  and different values of N . In the last of 
Table 1, we reported the CPU time (seconds) for the computations of the corresponding 
results. Also, in Figure 1, we plot the graphs of optimal control and the corresponding state 
trajectory obtained by the present method with 3=K  and 9=N .column  
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Table 1. The results of optimal switching instants 1t , 2t  and optimal cost J  obtained by 
       the present method with 3=K  and different values of N , for Example 1. 

 
  1t  2t  J  CPU time 

(seconds) 
6=3= NK  0.22451889 1.01940266 5.44119735  4.04  

    8=N  0.22452199 1.02006802 5.44100709 5.03 
     10=N  0.22451866 1.02002342 5.44097522 6.20  
     12=N  0.22451838 1.02002491 5.44097350 8.15  
     14=N  0.22451835 1.02002485 5.44097350 9.96 

 
 

 
 
 

Figure 1: The graphs of (a) state trajectory and (b) optimal control obtained by the  
                        present method with 3=K  and 9=N , for Example 1.  
 
Example 2. Consider a switched system consisting 
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Assume that 0=0t , 2=ft  and the system switches once at 1= tt  ( 20 1  t ) from 

subsystem 1 to 2. The initial conditions are 0=(0)1x  and 2=(0)2x . We want to find an 
optimal switching instant 1t  and an optimal input )(tu  such that the cost functional  

dttutxxxJ )](2))([(
2
12)(2)(

2
14)(2)(

2
1= 22

2

2

0

2
2

2
1    

is minimized.  
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 We applied the proposed method to solve this example. In Table 2, we reported the 
results of 1t  and J  obtained by the present method with 2=K  and different values of N . 
Also in Figure 2, we plot the graphs of optimal control and the corresponding state 
trajectory with 2=K  and 9=N . 
 

Table 2. The results of optimal switching instant 1t  and optimal cost J  obtained by the   
  present method with 2=K  and different values of N , for Example 2.  

 
  1t  J  CPU time 

(seconds) 
6=2= NK   0.19007133 9.78402619 2.62  

    8=N   0.18967215 9.76657993 3.04 

     10=N  0.18967109 9.76654884 3.46 

     12=N  0.18967110 9.76654882 4.42  

     14=N  0.18967107 9.76654882 5.60 
 

 

 
 

Figure 2: The graphs of (a) state trajectory and (b) optimal control obtained by the present  
                  method with 2=K  and 9=N , for Example 2.  
 
Example 3. Consider a switched system with internally forced switching only consisting of 
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Assume that 0=0t , 2=ft  and the system state starts at 1=(0)1x , 1=(0)2x , 

following subsystem 1 (subsystem 1 is active for 07)()(=))(),(( 2121  txtxtxtxc  and 
subsystem 2 is active for 0))(),(( 21 txtxc ). Assume that upon intersecting the hyper 
surface 0=),( 21 xxc , the system switches from subsystem 1 to 2. Also, assume there is only 
one switching which takes place at time 1t  ( 20 1  t ). We want to find an optimal input 

)(tu  such that the cost functional  

dttuxxJ )(
2
16)(2)(

2
110)(2)(

2
1= 22

0

2
2

2
1   

is minimized.  
Note that we have not considered state constraints in the subsystems of our problem 

modeled by Eqs. (2)–(5). For this reason, we state our technique in order to approximate 
state constraints. By setting 2=K , according to the proposed method, we have two sets of 
state functions values: (1)

jX , Nj ,0,1,=  , are the values of state functions in subsystem 1, 

and (2)
jX , Nj ,0,1,=  , are the values of state functions in subsystem 2. According to this, 

we obtain the constraints 0)( (1) jXc , Nj ,0,1,=  , in subsystem 1, and 0)( (2)  jXc , 

Nj ,0,1,=  , in subsystem 2. These new inequality constraints must be added to Eqs. 
(18)–(21). 

In Table 3, we listed the results of 1t  and J  obtained by the present method with 
2=K  and different values of N . Also in Figure 3, we plot the graphs of optimal control 

and the corresponding state trajectory with 2=K  and 9=N . 
 

Table 3. The results of optimal switching instant 1t  and optimal cost J  obtained by the  
   present method with 2=K  and different values of N , for Example 3.  

 
  1t  J  CPU time 

(seconds) 
6=2= NK   1.16328653 0.11315919 5.78 

    8=N   1.16293205 0.11309541 6.00  

     10=N  1.16278027 0.11306590 6.46  

     12=N  1.16270441 0.11305120 6.84  

     14=N  1.16266144 0.11304283 7.42  
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Figure 3: The graphs of (a) state trajectory and (b) optimal control obtained by the present 
                  method with 2=K  and 9=N , for Example 3.  
 
6. CONCLUSION 

In this paper, we have considered a class of optimal control problems governed by switched 
systems. Such systems arise in varied contexts in chemical processes, automotive engine 
control, traffic control, and manufacturing processes, etc. We have proposed a modified 
Legendre pseudospectral scheme in order to explore accurate solutions. For this purpose, 
we have restated the problem in form of an alternative problem in which the switching 
instants are considered as parameters. Then, we can solve the obtained NLP problem using 
existing subroutines. Three numerical examples considered in order to show the validity 
and applicability of the proposed method. 
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