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1. INTRODUCTION  

All graphs considered in this paper are undirected and finite without loops and multiple 
edges. Denoted by V(G) and E(G), we mean the set of vertices and the set of edges of graph 
G, respectively and suppose n = |V(G)|, m = |E(G)|. Two vertices are adjacent if and only if 
they are connected by an edge. 

The Wiener index [17] is the first reported distance based topological index defined as 
half sum of the distances between all the pairs of vertices in a molecular graph [10,16]. 
Topological indices are abundantly being used in the QSPR and QSAR researches. So far, 
many various types of topological indices have been described.  

Furtula and Gutman, in [4] introduced a new topological index namely, forgotten 
topological index and it is clearly stated that the forgotten index is a special case of the 
earlier much studied general first Zagreb index. They also established a few basic 
properties of it, see for example [1]. In 2014 unexpected chemical application of the F–
index was discovered and it is proved that the forgotten topological index can significantly 
enhance the physico–chemical applicability of the first Zagreb index.  
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2. NOTATION AND DEFINITIONS 

There are two Zagreb indices [10]: the first M1 and the second M2, can be defined as: 
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respectively. The first Zagreb index can be rewritten also as  
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For more details on these topological indices we refer to [8,11,14,16,18]. With this 
notation, the F– index is defined as [4,5] 
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In [7] it is shown that some topological indices have one of the following three 
algebraic forms: 
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where F1, F2 and F3 are functions dependent of a vertex or on a pair of vertices of the 
molecular graph G and the forgotten index is of the form Eq. (5).  

In 2006, bearing in mind Eqs. (1) and (2), Došlić [2] put forward the concept of the 
first and second Zagreb coindices, defined as  
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respectively, see also [9]. In formulas (8) and (9) it is assumed that x ≠ y. In full analogy 
with Eqs. (8), and (9), relying on Eq. (4), we can now define the F–coindex as 
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Let α is an arbitrary real number, the generalized version of the first Zagreb index is 
defined in [12,13] as follows: 

 





)(
11

)(
])()([)()(

GEuvGVu
vdududGMM 

 .                         (11) 

The generalized first Zagreb index was studied in several works such as [6,15] and 
the aim of this paper is to investigate the properties of Mα(G) where α = 3.  



On the forgotten topological index                                                                                               329 

 

The Zagreb and forgotten co–indices of a graph G and of its complement G  can be 
represented in terms of the Zagreb indices of G and forgotten index, respectively. The 
respective formulas are given in [5,9]. 
 

3. RESULTS AND DISCUSSIONS 

In this section, we propose several bounds for the F–index and then we compute the F–
index of some composite graphs. Throughout this paper we use standard notations of graph 
theory. The path, star, wheel and complete graphs with n vertices are denoted by Pn, Sn,Wn 
and Kn, respectively. 

An automorphism of the graph G is a bijection   on which preserves the edge set 
E, i.e. if e=uv is an edge of G, then e= uv is a member of E, where the image of vertex u 
is denoted by u. We denote the set of all automorphisms of G by ( )Aut G  and this set 
under the composition of mappings forms a group. This group acts on the set of vertices, if 
for any pair of vertices Vvu , , there is an automorphism ( )α Aut G such that u= v. An 
isomorphism of graphs G and H is a bijection : ( ) ( )α V G V H  such that ( )uv E G  if and 
only if ( ) ( ) ( )α u α v E H . Two isomorphic graphs G and H are denoted by G H .  
 
Theorem 1. Let G be a graph with orbits V1, V2, ..., Vr under action of Aut(G) on the set of 
vertices V(G). Then for ii Vu  , we have 

3
1( ) =  | |d( ) .r

i i iF G V u  
 
Proof. Let V1, V2, ..., Vr be all orbits of Aut(G) on the set of vertices. It is a well–known 
fact that for two vertices iVy,x  , d(x) = d(y). Then one can verify that  

3 3r
i 1 1( ) =  d( ) | |d( ) .r

u V i i iiF G u V u      

 
As an application of Theorem 1, consider the dendrimer D with r layers as depicted 

in Figure 1. The vertex degrees of this graph are 1 and 3, thus, it is bi–regular. The vertices 
of every layer are in the same orbit under the action of automorphism graph on the set of 
vertices. Hence, 

3 31
1 1( ) =  | |d( ) | |3 | | .r r

i ii i i rF G V u V V
     

This graph has 1 + 3 + 2.3 + 22.3 + ⋯ + 2r.3 = 1 + 3(2r+1 – 1) vertices in which the 
last layer has 2r.3 vertices. Hence,  

.||]||1[27)( 1
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r
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This means that .542.84)]12(31[272.3)(  rrrGF  
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Figure 1. 2–D Graph of Dendrimer D. 

 

Theorem 2. Let G be a graph on n vertices, then  
2 3
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Proof. We have 

3 3 3
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On the other hand, 
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For two positive integers x and y, it is clear that x3 is greater than x2 – 2y and the proof is 
completed. 
 
Theorem 3. Let G be a graph on n vertices, then  

22( ) ( ) 2[ ( ) ( )].F G F G M G M G    
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Proof. For every pair of vertices Vv,u  , we have ( ( ) ( )) 0d u d v  , hence 
2 2( ) ( ) ( ) ( )d u d v d u d v   and then F(G) ≥ 2M2(G). By a similar way, we can deduce that 

2( ) 2 ( ).F G M G  This confirms our claim. 

 
Theorem 4. Let G be a graph on n vertices, m edges and maximum degree Δ. Then  

2
1( ) ( ) ( 1) ( ) ( 3).F G F G n M G m n      

Proof. For each edge ( )uv E G  and for a vertex )G(Vu , the n − 1 − d(u) vertices are 
non-adjacent with the vertex u. Let Δ be the maximum degree of G. For ( )uw E G , we 
have ( ) ( ) [ ( ) ][ 1 ( )].d u d w d u n d u      So, 
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Hence, 
2

1( ) ( 1) ( ) ( ) ( 3).F G n M G F G m n      
 

Theorem 5. Let u,v be two vertices of graph G. Let G* = G – {vv1, ..., vvs} + {uv1, ..., uvs}. 
If d(u) + s>d(v) then F(G*) >F(G). 

Proof. Let dG(u) = d(u), for every vertex },{\ vuVx , we have 

* * *( ) ( ) , ( ) ( ) , ( ) ( ).G G GG G G
d u d u s d v d v s d x d x      

Hence, by the definition of F–index, we have 
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Clearly *( ) ( ) 0F G F G   if and only if ( )( ( )) ( )( ( ) ) 0G G G Gd u s d u d v d v s    . On the 

other hand, 1{ ,..., } ( ) \ [ ]sv v N v N u  implies that ( ) 0Gd v s   and so  

( )( ( )) ( )( ( ) ) 0G G G Gd u s d u d v d v s    . 
 

The following bounds for the forgotten topological index were proposed in [5]: 

(ܩ)ܨ ≥
(ܩ)ଵܯ

2݉ , 
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2
( )( ) 2 ( )M GF G M G
m
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2
2( ) 2 ( ) ( 1) .F G M G m n    

Here, we establish some new bounds. 

 
Theorem 6. Let G be a graph on n vertices and m edges. Then  

F(G) ≥ max{6m−2n,8m3/n2}. 
 
Proof. According to Bernoulli inequality, for every integer α ≥ 1, we have (1+x)α ≥ 1 + αx. 
Let x = d(ui) − 1, then d(ui)3 ≥ 1 + 3(d(ui) − 1) = 3d(ui) − 2. This means that F(G) ≥ 6m − 2n. 
On the other hand, Let x1, ..., xn be real numbers. Then, it is a well–known fact that 
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By putting k=3 we have F(G) ≥ 8m3/n2. This completes the proof. 

Theorem 7. Let G be a graph on n vertices, m edges, minimum degree δ and maximum 
degree Δ. Then 
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Proof. For every real number a, we can prove that  
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But d(ui) ≥ 1, and so  
2

1 13 2
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Thus, the proof is completed. 
 

Let G be a connected graph with n vertices and A be its adjacency matrix, where 

n,...,λ 1  are its eigenvalues. The k–th spectral moment of G is defined as  

n

i
k
iλ1

 and it is 

equal to the number of all closed walks of length k in G. Similarly, if n,...,1  are 
Laplacian eigenvalues, than the k–th Laplacian spectral moment is as follows: 
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Theorem 8 ([5]) If the graph G is triangle–free, then 
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where A is the adjacency matrix of G. 

 
Theorem 9. Let G be a connected graph, then  

F(G) = S3 – 3M1(G) + 6t. 

Proof. Let D be a diagonal matrix whose entries are the degree of vertices in G. We have 
3 3 3 3 2

1
3 2

1 1

( ) ( 3 )

( ) 3 ( ) 6 .

n
ii

n n
i ii i

tr D A tr D A A D

d u d u t
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 

    

   
 

Thus for the k–th spectral moment we have 
2

3 3 11( ) 3 ( ) 6 3 ( ) 6 .n
i iF G S d u t S M G t       

 
Corollary 10. Let G be a triangular–free graph, then  

F(G) = S3 – 3M1(G). 

4. COMPUTING THE F–INDEX OF SOME GRAPH PRODUCTS 

In this section we present explicit formulas for the F–index of several classes of graphs that 
arise via binary graph operations known as graph products. We start from the most 
common operation, the Cartesian product. The disjunction and the symmetric difference 
share many properties with the Cartesian product: they have the same vertex sets, they are 
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commutative and associative; hence they are considered next. The join of two or more 
graphs is also a commutative operation, but defined on the union instead on the Cartesian 
product of the vertex sets of the components.  
 
4.1 CARTESIAN PRODUCT 

The Cartesian product G×H of graphs G and H is a graph such that 
V(G×H)=V(G)V(H), and any two vertices (a,b) and (u,v) are adjacent in G×H if and only 
if either a = u and b is adjacent with v, or b = v and a is adjacent with u. The degree of a 
vertex (u1,u2) of G1×G2 is the sum of the degrees of its projections to the respective 
components, 

1 2 1 21 2 1 2( , ) ( ) ( ).G G G Gd u u d u d u    

 
Theorem 11. Let Gi (i = 1,2) be a graph on ni vertices and mi edges. Then 
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4.2 SYMMETRIC DIFFERENCE AND DISJUNCTION 

The disjunction HG  of two graphs G and H is the graph with vertex set V(G)×V(H) in 
which (u1,u2) is adjacent with (v1,v2) whenever u1 is adjacent with v1 in G or u2 is adjacent 
with v2 in H. If |V(G)| = n1, |E(G)| = m1, |V(H)| = n2, |E(H)| = m2, the degree of a vertex 
(u1,u2) of HG  is given by dG∨H((u1,u2)) = n2dG(u1) + n1dH(u2) −dG(u1) dH(u2). 
 
Theorem 12. Let Gi (i = 1,2) be a graph on ni vertices and mi edges. Then 

.mmGFnGFnGGF 212
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1
2
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1
  
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The symmetric difference HG  of two graphs G and H is the graph with vertex 
set V(G)×V(H) in which (u1,u2) is adjacent with (v1,v2) whenever u1 is adjacent with v1 in G 
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or u2 is adjacent with v2 in H, but not both. It follows from the definition that the degree of 
a vertex (u1,u2)of HG  is given by 

1 2 2 1 1 2 1 2(( , )) ( ) ( ) 2 ( ) ( ).G H G H G Hd u u n d u n d u d u d u     
 
Theorem 13. Let Gi (i = 1,2) be a graph on ni vertices and mi edges. Then 

.mmGFnGFnGGF 211
2

2
2
121 8)()()(

2
  

Proof. The proof is similar to the proof of Theorem 12. 
 

4.3 JOIN 

The join G = G1+ G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets 
E1 and E2 is the graph union 21 GG   together with all the edges joining V1 and V2. Let n1 
and n2 be number of vertices of G1 and G2, respectively. Then  

.
)(

)(
)(
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2

1

21 




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
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nud
ud
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G
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Theorem 14. Let Gi (i = 1,2) be a graph on ni vertices and mi edges. Then 
.mnmnGMnGMnnnnnGFGFGGF 12212111122
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212121 33)(3)(3)()()(

1
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Proof. We have 
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

 

4.4 COMPOSITION 

The composition G = G1[G2] of graphs G1 and G2 with disjoint vertex sets V1 and V2 such 
that |V1| = n1, |V2| = n2 and edge sets E1 and E2 such that |E1| = m1, |E2| = m2 is the graph 
with vertex set V1×V2 and u = (u1,u2) is adjacent with v = (v1,v2) whenever u1 is adjacent 
with v1 or u1 = v1 and u2 is adjacent with v2. It follows from the definition that the degree of 
a vertex (u1,u2) of G1[G2] is given by 

1 2 1 2[ ] 1 2 2 1 1 2(( , )) ( ) ( ).G G G Gd u u n d u n d u   

 
Theorem 15. Let Gi (i = 1,2) be a graph on ni vertices and mi edges. Then 

.GMmnGMmnGFGFnGGF )(6)(6)()(])[( 2112112
2
221

3
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Proof. We have 
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3
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21 21 12121
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

    

4.5 CORONA PRODUCT 

The corona G1oG2 was defined by Frucht and Harary [3] as the graph G obtained by 
taking one copy of G1 of order p1 and p1 copies of G2, and then joining the i–th node of 
G1 to every node in the i–th copy of G2, see Figure 2. Suppose p1, p2, q1 and q2 are the 
number of vertices and the number of edges of graphs G1 and G2, respectively. It is easy 
to see that the number of vertices and the number of edges of G1oG2 are p1(1 + p2) and 
q1 + p1q2 + p1p2, respectively. 

G1

uj,i

i-th copy of G2

k-th copy of G2

vi

vk

 
Figure 2. The Corona Product G1G2. 

 
Example 1. For the graphs G1 = K2 and G2 = P3, the two different coronas G1oG2 and 
G2oG1 are shown in Figure 3. 
 

 
            (a) 

 
           (b) 

 
Figure 3. (a) The Corona Product K2oP3 and (b) P3oK2. 

Theorem 16. Let Gi (i = 1,2) be a graph on ni vertices and mi edges. Then 
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Proof. It is not difficult to see that  
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This means that 
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4.6 TENSOR PRODUCT 

For given graphs G1 and G2 their tensor product G1G2 is defined as the graph on the 
vertex set V (G1) × V (G2) with vertices u = (u1, u2) and v = (v1, v2) connected by an edge 
if and only if either u1v1E(G1) and u2v2E(G2), see Figure 4. In other words, G1G2 
has exactly n1n2 vertices and 1 22 2 12m m   edges, where n1, n2 are the number of 
vertices and m1, m2 are the number of edges of G1 and G2, respectively. 
 

 
 

Figure 4. The Tensor Product P3P5. 

Theorem 17. Let Gi (i = 1,2) be a graph on ni vertices and mi edges. Then 
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Proof. Notice that the degree of every vertex of the tensor product can be computed as  

1 2 1 2 1 2 1 2 1 2 1 2d ( , ) = d ( )+d ( ) d ( )d ( ).G G G G G Gu u u u u u   

Similar to the proof of Theorem 11, the proof is straightforward. 
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