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Let G  be a connected graph, and let D[G] denote the double graph of 
G. In this paper, we first derive closed-form formulas for some 
distance based topological indices for D[G] in terms of G. Finally, 
these formulas are applied for several special kinds of graphs, such 
as, the complete graph, the path and the cycle.  
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1. INTRODUCTION 

Topological indices of molecules can be carried out through their molecular graphs. A 
molecular graph is a collection of points representing the atoms in the molecule and a set of 
lines representing the covalent bonds. In graph theory, these points and lines are called 
vertices and edges, respectively. The chemical graph theory is a branch of mathematical 
chemistry in which topological indices of chemical graphs relates the certain physical, 
biological or chemical properties of the corresponding molecules. 
 Many different topological indices have been investigated so far. Most of the useful 
topological indices are distance based or degree based. The Wiener index, the Harary index 
and the total eccentricity index are examples of distance based topological indices and the 
Zagreb indices and Randić [8] index are examples of degree based topological indices. 

The Wiener index of a molecular graph is defined as the sum of all distances 
between different vertices. This topological index was introduced by Wiener [13]. It also 
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gave rise to some modifications such as, the hyper-Wiener index and the Tratch-
Stankevich-Zefirov index. 

Plav s ić [7] et. al. and Ivanciuc et. al. [4] independently introduced the Harary index 
in honor of Frank Harary. The Harary index is obtained from the reciprocal distance matrix 
and has a number of interesting physical and chemical properties. The Harary index and its 
related molecular descriptors have shown some success in structure-property correlations 
[2, 3]. Its modification has also been proposed and their use in combination with other 
molecular descriptors improves the correlations [10, 11]. 

In order to improve the interest of the Harary-type indices, many modification were 
proposed recently. In [1] authors introduced a correction that gives more weight to the 
contributions of pairs of vertices of high degrees, named as the additively weighted Harary 
index. 
 The eccentric connectivity index belongs to the family of distance based topological 
indices. This quantity has been recently used in several papers on structure-property and 
structure-activity relationship and its mathematical properties have been investigated [9]. 
Munarini et. al. [6] define the double graph of a simple graph denoted as D[G]. The double 
graph of a simple graph G can be build up taking two distinct copies of the graph G and 
joining every vertex v  in one copy to every vertex w  in the other copy corresponding to a 
vertex w  adjacent to v in the first copy. In this paper we study some distance based 
topological indices for general double graphs. 

 
2. DEFINITIONS AND PRELIMINARY RESULTS 

All the graphs G considered in this paper are finite and simple. For basic definitions and 
notation see [12]. Let G(V,E) be a simple connected graph where V(G) and E(G) are the set 
of vertices and set of edges, respectively. By dG(v) we denote the degree of vertex v in G. 
The distance between two vertices u and v, in a graph G, is the length of any shortest path 
connecting u  and v  and denoted as dG(u,v). The eccentricity of a vertex v  in G  is the 
maximum distance between v and any other vertex in G, it is denoted eccG(v). By Pn  and Sn  
we denote the path with n  vertices and the star graph k1,n-1 respectively. 
 The Wiener index of a given graph G  having V(G)=v1,…,vn is defined as the sum 
of distances between all unordered pairs of vertices of a graph G, i. e.,  

.1 ),()(   nji jvivGdGW  

The Harary index of  G  is defined as the sum of reciprocals of distances between 
all unordered pairs of vertices of a connected graph:  

.
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1
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nji jiG vvd

GH  

The additively weighted Harary index for  G  is defined by 
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and multiplicative weighted Harary index for  G is defined by 
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The eccentric connectivity index of G  is  





)(

),()()(
GVv

GG
c veccvdG  

and the total eccentricity of G  is defined by 





)(

).()(
GVv

G veccG  

  
 The direct product of two graphs G  and H  is a graph GH  with  V(GH) = V(G) 
 V(H) such that (u1,v1) is adjacent to (u2,v2) in GH  if and only if u1u2E(G) and 

1 2 ( ).v v E H By adding a loop to every vertex of K2 we obtained the graph sK 2 . The double 

graph of a simple graph G  can be expressed as D[G] = G sK 2 . Since the direct product of 
a simple graph with any graph is always a simple graph, it follows that the double of a 
simple graph is still a simple graph. Some of its elementary properties are discussed in [6]. 
If G  has n  vertices and m edges then D[G] has 2n vertices and 4m  edges. For illustration 
see figure1.  

 

 
Figure  1 .A graph G  and its double graph D[G] . 
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 Let G(V,E) be a simple graph and G′(V′, E′)  be its distinct copy. Let D[G] be the 
double graph of G and  V(D[G]) =V(G)V(G′) , where V(G) = {x1,x2,…,xn}  and   

},,,{)( 21 nyyyGV  and yi  is the corresponding vertex of xi  in  V(G′). 
 
Lemma 1.  For the above defined double graph D[G]  

  .,,1,;),(),( njixxdxxd jiGjiGD   

 
Proof. Clearly, GD[G]. Let ])[()(},{,{ GDVGVxxx jii   then 

),(),(][ jiGjiGD xxdxxd  . Suppose     mxxdxxdl jiGjiGD  ,,][   and a shortest path in 

[ ]D G  from xi to xj  is  xiv1v2…vl-1xj. If l =1  then the property is obvious. Suppose 21 . 
Since  l < m, there exists some vkV(G′). As vk-1  and vk+1 are adjacent to vk, by definition of 
the double graph, vk−1  and vk+1  are adjacent to xk (corresponding vertex of vk  in V(G)). 
Now we have obtained a path xiv1v2...xk....vl−1xj. In this way we can find a path  in G  of 
length l , which is a contradiction. It follows that      , = ,i j G i jD Gd x x d x x . Similarly,

  ).,(,][ jiGjiGD yydyyd   

 
Lemma 2.  For the double graph D[G] 

  .,,1,;),(),( njixxdxxd jiGjiGD   

 
Proof. Let  xi V(G) and yj  V(G′). Suppose   mxxdyxdl jiGjiGD  ),(,][   and a 

shortest path in D[G] is xiv1v2…vl-1yj. If  l=1 the property is true. Let .2l  It follows that 
there exists some vk  V(G′). Since  vk-1  and vk+1  are adjacent to vk, by construction vk-1    
and 1kv   are adjacent to kx (corresponding vertex of kv  in ( ))V G . We have obtained a path 

1 2 1i k l jx v v x v y   in [ ]D G , which implies the existence of a path 1 2 1i k l jx x x x x x   in 

G  of length l , a contradiction. If   mxxdyxdl jiGjiGD  ),(,][   we get a similar 

contradiction. Consequently,     .,,][ jiGjiGD xxdyxd   

The following results are obvious from the construction of the double graph.  
 
Lemma 3.  We have 

.,,1;2),(][ niyxd iiGD   

  
Lemma 4 . For the double graph D[G]   

.,,1;)(2)()( ][][ nixdydxd iGiGDiGD   
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Lemma 5 . The eccentricities of the vertices of the double graph D[G]  are  

.,,1;1)(2)()(
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3. MAIN RESULTS 

Theorem 1.  Let G  be a simple graph with n  vertices. Then the Wiener index of D[G]  is 
given by  

  .2)(4)( nGWGDW   
 

Proof. The Wiener index of D[G]  is  
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By Lemmas 1   3 we deduce  

.2)(4
2)(2)()(

2),(),(),(])[(
1 ,,1,1

nGW
nGWGWGW

nxxdxxdxxdGDW
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ji
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  A well known property of the Wiener index of trees implies the following corollary.  
 

Corollary 1. Suppose Tn  is a tree with n  vertices. Then  
     ).()()( nnn PDWTDWSDW   

Theorem 2. Let G  be a simple graph with n vertices. Then the Harary index of D[G]   is 
given by  

.
2

)(4)][( nGHGDH   

Proof. The Harary index of D[G]  is  
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By Lemmas 1   3 we have  

   

.
2

)(4

2
)(2)()(

2),(
1

,
1

,
1])[(

,,1,11

nGH

nGHGHGH

n
xxdxxdxxd

GDH
ji

nji jiGnji jiGnji jiG





 

 

 

 
Corollary 2. Let Tn be a tree with n  vertices. Then 
 

    .])[()( nnn SDHTDHPDH   
 

Theorem 3. Let G be a simple graph with m  edges. Then the additively weighted Harary 
index of [ ]D G  is given by 

.4)(8])[( mGHGDH AA   
  

Proof. The additively Harary index of D[G]  is 
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by  Lemmas 1   4 the last expression is equal to  
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Corollary 3. Suppose Tn  and Un  be tree and unicyclic graphs, respectively, with n  
vertices. Then  

.4)(8)][(
.)1(4)(8])[(
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Corollary 4 . Suppose Tn  is a tree with n  vertices. Then  

 ).(])[(])[( nAnAnA SDHTDHPDH   
  

Theorem 4. Let G  be a simple graph. The multiplicative weighted Harary index of D[G]   
is given by  
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Proof. The multiplicative Harary index of D[G]  is  
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 By Lemmas 1   4 this expression equals 
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Corollary 5 . Suppose Pn , Sn ,Cn  and Kn  be the path, star cyclic and complete graphs with  
n vertices. Then  
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Theorem 5. Suppose G  is a graph of order n, having k  vertices v  such that ecc(v)=1 ( or 
equivalently, dG(v)=n-1). The eccentric connectivity index of D[G]   is given by  

).1(4)(4)][(  nkGGD cc   
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By Lemmas 4 and 5 we have  

 

 
Theorem 6. Let G be a simple graph having k  vertices with eccG(v) = 1. The total 
eccentricity index of D[G] is given by 
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Corollary 6. For the star and the complete graph we have:  
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