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1. INTRODUCTION  

Let G = (V,E) be a simple connected graph with vertex set V and edge set E. A topological 
index of a simple connected graph G is a graph invariant which is related to the structure of 
the graph. The Wiener index is one of the best known topological index of a simple 
connected graph which is studied in both mathematical and chemical literature and it's 
definition is in terms of distances between arbitrary pairs of vertices, see for example [1, 2, 
3, 4]. The Wiener index of G is denoted by )(GW and it is defined by: 
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where ),( vud is the distance between vertices u and v and  
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The Szeged index [5, 6] is another invariant of a graph which is based on the 
distribution of the vertices and introduced by Ivan Gutman and it is the same with the 
Wiener index in the case that G  is a tree. The set of vertices of graph G  which are closer 
to u  (resp. v ) than v  (resp. u ) is denoted by )|( GeNu (resp. )|( GeNv ). This index is 

defined as the summation of ( )|( Genu )|( Genv ) where )|( Genu  (resp. )|( Genv ), is the 
number of vertices of graph G closer to u  (resp. v ) than v  (resp. u ), over all edges uve 
of graph. Now, the Szeged index of G  which is denoted by )(GSz  is defined as: 

 

)).|(.)|(()( GenGenGSz vEuve u 
  

The Padmaker-Ivan (PI) index [7, 8] is another topological index of a simple 
connected graph that takes into account the distribution of edges so is closely related to 
Szeged index. The PI index of G  is defined by 

 

 


Euve eveu GenGenGPI )),|()|(()(  
 

where )|(( Geneu (resp. )|(( Genev ) is the number of edges of the subgraph of G  which has 

the vertex set )|( GeNu  (resp. )|( GeNv ). 
The molecular topological index (Schultz index) was introduced by Schultz and 

Schultz [9, 10]. In addition to the chemical applications, the Schultz index attracted some 
attention that in the case of a tree it is related to the Wiener index [11]. It is denoted by 

)(GS and defined as follows: 
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 where )(u  (resp. )(v ) is the degree of vertex u  (resp. v ). 
The Gutman index which attracts more attention recently is defined by Klavžar and 

Gutman in [11, 12]. This index is also known as the Schultz index of the second kind but in 
this paper the first name is used. Gutman [11] has proved that if G  is a tree then there is a 
relation between Wiener and Gutman indices of G  that we will mention this in Section 2. 
The Gutman index of G  is denoted by )(GGut and is defined as follows: 

   Vvu vuGGut },{ ))()(()(  
The hyper–Wiener index is one of the graph invariants, used as a structure 

descriptor related to physicochemical properties of compounds. This index was introduced 
by Randić in 1993 as extension of Wiener index [13] and it has come to be known as the 
hyper–Wiener index by Klein [14]. The hyper–Wiener index of G is denoted by )(GWW
and is defined as follows: 
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Here we mainly try to determine the Wiener, hyper Wiener and PI  indices of two 
kinds of dendrimer graphs (explained in Section 2), then the Schultz, Szeged and Gutman 
indices are obtained as results of the relation between the Wiener index with both the 
Schultz and Gutman indices. 

u0

u1

u2

ui

un

ui+1

un-1

 

Figure 1. The first dendrimer graph nG . 
  
 
 

 
2. CALCULATING THE WIENER, HYPER-WIENER AND PI INDICES OF THE 
FIRST DENDRIMER GRAPH nG  
 
Let G = (V,E) be  the graph with vertex set V and edge set E as in Figure 1. This graph 
begins with one vertex u0  which connects to two other vertices such that each one of these 
two vertices connects to two other vertices and so on. The vertices which have the same 
distance from u0 are located on a branch. Let G have )1( n  branches so there are 2i 
vertices in the i'-th branch ( n i0 ). We denote this graph by nG .  

 
Proposition 2.1. Let ),(G EVn   be the dendrimer graph in Figure 1, then:  

 4).+(n 2+2)-(n 4)( 1)+(n1)+(nnGW  
 

Proof. From definitions we have: 
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This graph has 1n  branches and there are i2  vertices in the i'–th branch, so we 
denote the vertex set of this branch by iV , hence we have: 

n

i iVV
0

 . Because of the 
symmetric structure of the graph nG  (Figure l), for every vertex u in the n'th branch, )(ud
is constant and doesn't depend on u . So we choose iu  as representative of the i'–th branch (

n i0 ). 
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12 n
 vertices which are in lower branch of Figure l, are of the same distance from 

nu  and this value equals to: 
2d( nu , 0u )=2n.   

Also 22 n vertices are of the same distance from nu and this value equals to: 
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Finally continuing in this way the distance between nu  to the last vertex in the n'–th 

branch is equals to: 
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For computing the second part of the summation in (1), note that because the graph 

nG is a tree, for every vertex i

n
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Considering (2) and (3): 
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By multiplying n2  in )( nud the distance between vertices in the n'–th branch is 

considered twice, so if the Wiener index of nG with n  (resp. 1n ) branch is denoted by 
)1( nW  (resp. )(nW ) we have: 
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So, 
                    4).+(n 2+2)-(n 42)5(2)53()( 1)+(n1)+(n2
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Corollary 2.2. 4).+(n 2+2)-(n 4)( 1)+(n1)+(nnGSz   

Proof. The graph nG is a tree, so by [11] the result is obtained.                                             ■ 

 
Corollary 2.3. 2.-19)+(4n 2+9)-(4n 4)( 1)+(n1)+(nnGS  
 
Proof. Because nG  is a tree by [11] we have: 1)-n(n - )( 4)( nn GWGS  , where n is the 
number of vertices of nG . Now by replacing the closed form of )( nGW which was obtained 
from proposition 2.1, the proof is completed.                                                                         ■ 

Corollary 2.4. 10.19)+(4n 2+10)-(4n 4)( 1)+(n1)+(n nGGut  
Proof. Because nG  is a tree, by [11] we have, 1)-1)(n-(2n - )( 4)( nn GWGGut   where n
is the number of vertices of nG  and by proposition 2.1 it is done.                                     ■ 
 
Corollary 2.5. 2).-3)(2-2()( 1)+(n1)+(nnGPI   
Proof. Because nG is a tree so for every edge uve  of nG  we have: 
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Subgraphs of nG  with vertex sets )G|( neNu and )|( nv GeN both are trees and 

whose number of edges are 1)|( nu Gen  and 1)|( nv Gen  respectively. Then we have:  
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Proposition 2.6. The hyper–Wiener index of nG  in Figure 1 is:  
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Proof. By definition we have: 
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Because of the symmetric structure of the graph nG in Figure l, d(u) for every 
vertex u in the n'–th branch is constant and doesn't depend on u, so we choose iu as 
representative of the i'–th branch ( 1i0  ).  
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 The graph nG  is a tree, so, for every vertex, i
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n2 vertices are in the n'–th branch and by symmetric structure of the graph nG we have : 
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By (4) in the proof of the proposition 2.1, and considering (7), (8): 

382)19124(2322)344(

)()()(
221

1
2

1 1
222








 




nnnniii
ududud

nn

i
i

n

i iin  

Therefore: 

).322(2)16103(2

),(2)(2

),()(2),(),(

2212

212

},{
221

0},{
2

},{
2









 


  
 

nnnnn

vudud

vududvudvud

n
nVv n

n
n

n
nVvun

nn
i iVvuVvu 

 

         
 

Now let,  








i

i jVvu
vudiF

0
},{

2 ).,()(  

So, 










n

i

ii
n

i
Vvu

iiiiiFiFvud
1

2212

1
},{

2 )322(2)16103(2))1()((),(  

 
)9(.2)274(2)74(2.4 2121   nnnn nn  

 



The Topological Indices of some Dendrimer Graphs                                                                  31 

 

Now considering (9) and the formula of )( nGW which was computed in proposition 
2.1, and replacing those in (5), the proof is done.                                                                  ■ 

 
 
 
 
 
 
 

 

 

 

Figure 2. The second dendrimer graph nH . 
 
3. CALCULATING THE WIENER, HYPERWIENER AND PI INDICES OF THE 

SECOND DENDRIMER GRAPH nH  
 
Let G = (V,E) be the graph with vertex set V  and edge set E , that begins with one vertex 

0u  in Figure 2 that connects to three vertices which form the first branch and each one of 
these three vertices connects to two other vertices in second branch and so on. It means that 
any vertex but 0u  in the i'–th branch joins to the two vertices in the (i+1)'–th branch, so the 
vertices which have the same distance from 0u  are located on one branch. Let G have 1n

branches therefore, there are 123  i vertices in the i'–th branch ( n i0 ). The graphG is 
another kind of dendrimer graph which have 1n  branches, which is denoted by nH . 

 
Proposition 3.1. Let ),( EVH n   be the dendrimer graph in Figure 2, then:  

3-2185)4-3(3n  )( nn nHW . 
 

Proof.  The graph nH  consists of a starting vertex u0 and n+1 branches such that the vertex 
set of the i'–th branch ( 0i ), has 123  i  vertices and is denoted by iV and 1|| 0 V . So we 
have: 
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Because of the symmetric structure of the graph G in Figure 2, )(ud for every vertex u  in 
the n'–th branch is constant and doesn't depend on u , so we choose iu  as representative of 
the i'–th branch ( n i0 ). 
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2/3 vertices in n'–th branch have the same distance from ui which is:  
nuud n 2),(2 0  . 

And the distance of 1/2 of the rest vertices in this branch from un is: 
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By continuing in this way we have:  
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Now because nH is a tree, the path between any two vertices is unique and for 

every vertex i
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By (10), (11) and (12) we have: 
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If the Wiener index of nH  with 1n branches is denoted by ),(nW we have: 
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And the proof is completed.                                                                                                     ■ 
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Corollary 3.2. 3-2185)4-3(3n )( nn nHSz . 
 
Proof. The graph nH  is a tree so, by [11] the result is obtained.                                           ■ 
 
Corollary 3.3. 18-)87(2+69)-(36n 4   )( nnnHS . 
 
Proof. Because nH  is a tree by [11] we have, 1)-n(n - )( 4)( nn GWGS  , where n is the 
number of vertices of nH . Now by replacing the closed form of )( nHW which was 
obtained from proposition 3.1, the proof is completed.                                                          ■ 
 
Corollary 3.4. 97.-)105(2+78)-(36n 4)( nnnGGut   
 
Proof. Because nH  is a tree by [11] we have, 1)-1)(n-(2n - )( 4)( nn GWGGut   which n  
is the number of vertices of nH  and by proposition 3.1 it is done.                                        ■  
 
Corollary 3.5. 4)-23( 3)-23()( nn nHPI . 

 
Proof. Because nH  is a tree so for every edge uve  of nH we have:  
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Subgraphs of nH  with vertex sets )H|( neNu and )|( nv HeN  both are trees, so the 
number of edges of them are 1)H|( n enu  and 1)H|( n env respectively. Then we have:  
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Proposition 3.6. The hyper–Wiener index of nH  is: 
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 Proof. By the definition we have: 
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Because of the symmetric structure of the graph nH Figure 2, d(u) for every vertex u in the 
n'–th branch is constant and doesn't depend on u, so we choose ui as representative of the i'–
th branch ( 1i0  ). 
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The graph nH  is a tree so, for any vertex i
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 2/3 vertices of the n'–th branch have the same distance from un which is:  
,2),(2 0 nuud n   

 and the distance of 1/2 of the rest vertices in this branch from un is: 
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By (13) in the proof of the proposition 3.1, and considering (16), (17): 
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Therefore: 
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Now let, 
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So, we have: 

.9)2(1054)16103(6)1()(),( 2

1
},{

2 



nn

n

i
Vvu

nniFiFvud   )18(  
 

Now considering (18) and the formula of )( nHW  which was computed in 
Proposition 3.1, and replacing those in (14), the proof is done.                                             ■  
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