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Bucket recursive trees are an interesting and natural generalization 
of ordinary recursive trees and have a connection to mathematical 
chemistry. In this paper, we give the lower and upper bounds for 
the moment generating function and moments of the multiplicative 
Zagreb indices in a randomly chosen bucket recursive tree of size 
n  with maximal bucket size 1b . Also, we consider the ratio of 
the multiplicative Zagreb indices for different values of n  and b . 
All our results reduce to the ordinary recursive trees for 1=b . 
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1.  INTRODUCTION  

Trees are defined as connected graphs without cycles. Recursive trees are rooted labelled 
trees, where the root is labelled by 1 and the labels of all successors of any node v  are 
larger than the label of v  [8]. It is of particular interest in applications to assume the 
random recursive tree model and to speak about a random recursive tree with n  nodes, 
which means that one of the 1)!( n  possible recursive trees with n  nodes is chosen with 
equal probability, i.e., the probability that a particular tree with n  nodes is chosen is always 

1)!1/( n . An interesting and natural generalization of random recursive trees has been 
introduced in [7], and these are called bucket recursive trees. In this model the nodes of a 
bucket recursive tree are buckets, which can contain up to a fixed integer amount of 1b  
labels. A probabilistic description of random bucket recursive trees is given by a 
generalization of the stochastic growth rule for ordinary random recursive trees (which  is 
the special instance 1=b ). In fact, a tree grows by progressive attraction of increasing 
integer labels: when inserting label 1n  into an existing bucket recursive tree containing n  
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labels (i.e., containing the labels }{1,2,..., n ) all n  existing labels in the tree compete to 
attract the label 1n , where all existing labels have equal chance to recruit the new label. 
If the label winning this competition is contained in a node with less than b  labels (an 
unsaturated bucket), label 1n  is added to this node, otherwise if the winning label is 
contained in a node with b  labels already (a saturated bucket), label 1n  is attached to this 
node as a new bucket containing only the label 1n . Starting with a single bucket as the 
root node containing only the label 1, after 1n  insertion steps, where the labels n,2,3,  
are successively inserted according to this growth rule, results in a so called random bucket 
recursive tree with n  labels and maximal bucket size b . For an existing bucket recursive 
tree T  with n  labels, the probability that a certain node Tv  with capacity bvc  )(1  
attracts the new label 1n  is equal to the number of labels contained in v , i.e., c(v)/n (see 
[7]). Figure 1 illustrates a bucket recursive tree of size 11=n  with maximal bucket size 

2=b . For a connection to chemistry, suppose n  atoms in a dendrimer (a repetitively 
branched molecule) are stochastically labelled with integers n,1,2, , then labelled atoms 
in a functional group can be considered as the labels of a bucket in a bucket recursive tree. 
It is obvious that the number of nodes (here buckets) in a bucket recursive tree T  is less 
than n  for 1>b . Thus we can show the size of the tree as a function of n  and b . Let )(bh  
be a real valued function of b , where 0=(1)h  and 1)( bh  for all 2b . Now, we can 
write the size of the tree as )(bhn  , i.e., )(|=)(| bhnTV  . We choose the function )(bh  
in this form for relation between the bucket recursive trees and ordinary recursive trees. 
 

 
Figure 1: A bucket recursive tree of size 11 with maximal bucket size 2  [6]. 

 
Two vertices of graph G , connected by an edge, are said to be adjacent. The 

number of vertices of G , adjacent to a given vertex v , is the degree of this vertex, and 
will be denoted by )(vd . Todeschini et al. [9, 10] have suggested to consider 
multiplicative variants of additive graph invariants, which applied to the Zagreb indices 
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would lead to the multiplicative Zagreb indices of a graph G , denoted by )(1 G  and 
)(2 G , under the name first and second multiplicative Zagreb index, respectively. These 

are defined as  
 

                     2

)(
1 ))((=)( vdG

GVv



                                                                              (1) 

and  
              ),()(=)(

)(
2 vdudG

GEuv



                                                                         (2) 

 

 where )(GV  and )(GE  are the vertex set and edge set of G , respectively [3]. 
In probability theory and statistics, the moment generating function of a random 

variable is an alternative specification of its probability distribution. Thus, it provides the 
basis of an alternative route to analytical results compared with working directly with 
probability density functions or cumulative distribution functions. There are particularly 
simple results for the moment generating functions of distributions defined by the weighted 
sums of random variables. Note, however, that not all random variables have moment 
generating functions.  
 
Definition 1.1 The moment generating function of a random variable X  is defined as  
 

,     )),(exp(=)( RttXtM X E  
wherever this expectation exists.  
 

The reason for defining this function is that it can be used to find all the moments of 
the distribution. In fact,  

,
!

=)(
0=

kk

k
X t

k
tM 



 

where 1)( kk  is the k th moment of X , i.e., )(= k
k XE  [1]. 

 

2. RESULTS 

Let )(vdn  denote the degree of bucket v  in our model of size n  with maximal bucket size 

b, and bnZ ,1,  be the first multiplicative Zagreb index. We also define nM  to be the sigma–

field generated by the first n  stages [1]. If label n  is attached to an unsaturated bucket, 
then bnbn ZZ 1,1,,1, =  . But if label n  is attached to a saturated bucket, then by the stochastic 

growth rule of the tree and by definition of the first multiplicative Zagreb index,  
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where U  is uniformly distributed on buckets set.  
 
Theorem 2.1  Let ))(exp(=)( ,1, bntZtM E  be the moment generating function of bnZ ,1,  of a 

bucket recursive tree of size n  with maximal bucket size b . Then  
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where 1)( ,, kbnk  is the k th moment of bnZ ,1, . For 1k ,  
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since k

bnZ 1,1,   is 1nM -measurable and the label n  is attached to any saturated bucket v  of 

the already grown tree 1nT  with probability 
1
)(

n
vc . Thus  
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Taking expectation of the inequality (4):  
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Also 1=1,1, bbZ  . Thus (5) leads to  
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and proof is completed.  
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If we replace t  by tln , then we obtain the upper bound for the probability 

generating function [1]. 
 
 Let bnZ ,2,  be the second multiplicative Zagreb index of a bucket recursive tree of 

size n  with maximal bucket size b . Then by definition of the second multiplicative Zagreb 
index,  
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Theorem 2.2  Let ))(exp(=)( ,2, bntZtN E  be the moment generating function of bnZ ,2,  of a 

bucket recursive tree of size n  with maximal bucket size b . Then  
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Proof. Let 1)( ,, kbnk  be the k th moment of bnZ ,2,  of a bucket recursive tree of size n  

with maximal bucket size b . For 1k , similar to the first multiplicative Zagreb index,  
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Taking expectation of the inequality (8):  
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Now, proof is completed just similar to the proof of Theorem 2.1.  
  
 In passing, we consider the ratio of the multiplicative Zagreb indices for different 
values of n  and b .  
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Theorem 2.3  Suppose  
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With the same manner, we can obtain the upper bound for kbn ;,1,2,P .  

 
Theorem 2.4  Suppose  
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Proof. By definition of the conditional expectation,  
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With the same manner, we can obtain the lower bound for kbbn ;2,1,2,1,S .  
 
Corollary 2.5 The presented results in Theorem 4 reduce to the previous results in 
Theorem 2 for bbb == 21 .  
 
Theorem 2.6 Suppose  
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With the same manner, we can obtain the lower bound of kbji ,,,2,E .  

 We can study the ratio of the multiplicative Zagreb indices for different values of k  
as n  and d  are different with the above presented approach.  
 
Corollary 2.7  For ordinary recursive trees,  
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Then the bounds does not depend on i  and j  in ordinary recursive trees.  
 

3. DISCUSSION AND CONCLUSION 

So far, the multiplicative Zagreb indices have been studied vastly in literature from 
mathematical point of view. In this paper, we introduced the first probabilistic analysis of 
the multiplicative Zagreb indices in the random bucket recursive trees. Through the 
recurrence equations, an upper bound related to the first multiplicative Zagreb index and a 
lower bound related to the second multiplicative Zagreb index are obtained. As an 
interesting result it is shown that these bounds are the same in this model. It is difficult to 
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find a lower bound in Theorem 2.1 and an upper bound in Theorem 2.2, since the 
maximum degree of buckets of our model might not change for different values of n . 
However, we can study some probabilistic characteristics of these indices such as 
martingales, asymptotic normality and so on (see [4, 5, 6] for details). The lower and upper 
bounds for the moment generating function and moments are very important. For example, 
by Markov’s inequality,  
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Eliasi et al. [2] considered a multiplicative version of the first Zagreb index defined as  
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With the same approach, we can obtain the lower and upper bounds related to this index. 
Generally, one can extend this approach to another indices and tree structures. 
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