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ABSTRACT The concept of weak algebraic hyperstructures or Hv-structures constitute a 
generalization of the well-known algebraic hyperstructures (semihypergroup, hypergroup and 
so on). The overall aim of this paper is to present an introduction to some of the results, 
methods and ideas about chemical examples of weak algebraic hyperstructures. In this paper 
after an introduction of basic definitions and results about weak algebraic hyperstructures, we 
review: 

(1) Weak algebraic hyperstructures associated with chain reactions. 
(2) Weak algebraic hyperstructures associated with dismutation reactions. 
(3)Weak algebraic hyperstructures associated with redox reactions. 

KEYWORDS Weak algebraic hyperstructure • hypergroup • Hv-group • chain 
reaction • dismutation reaction • redox reaction. 

 
 
1. INTRODUCTION 

The hyperstructure notion was introduced in 1934 by the French mathematicians Marty, at 
the 8th Congress of Scandinavian Mathematicians. The motivating example was the 
quotient of a group by any, not necessary normal, subgroup. Algebraic hyperstructures in 
the sense of Marty are a suitable generalization of classical algebraicstructures. In a 
classical algebraic structure, the composition of two elements isan element, while in an 
algebraic hyperstructure, the composition of two elements isa set. Many papers and several 
books have been written till now on hyperstructures [2, 3, 4, 14, 32]. Many of them are 
dedicated to the applications of hyperstructures in other disciplines. In 1996, Santilli and  
Vougiouklis [24] point out that inphysics the most interesting hyperstructures are the one 
called e-hyperstructures. The e-hyperstructures are  special kind of hyperstructures and they 
can be interpreted asa generalization of two important concepts for physics: Isotopies and 
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Genotopies. In [15], Davvaz, Santilli and Vougiouklis studied multi-valued hyperstructures 
following the apparent existence in nature of a realization of two-valued hyperstructures with 
hyperunits characterized by matter-antimatter systems and their extensions, where matter is 
represented with conventional mathematics and antimatter is represented with isodual 
mathematics, also see [16]. In [17], the authors presented Ying’s twin universes, Santilli’s 
isodual theory of antimatter, and DavvazSantilliVougiouklis two-valued hyperstructures 
representing matter and antimatter in two distinct but co-existing space times. They 
identified a seemingly new map for both matter and antimatter providing a mathematical 
prediction of Ying’s twin universes, and introduced a four-fold hyperstructure representing 
matter-antimatter as well as Ying’s twin universes, all co-existing in distinct space times. 
Another motivation for the study of hyperstructures comes from physical phenomenon as 
the nuclear fission. This motivation and the results were presented by Hošková, Chvalina 
and Račková (see [20, 21]). In [11], the authors provided, for the first time, a physical 
example of hyperstructures associated with the elementary particle physics, Leptons. They 
have considered this important group of the elementary particles and shown that this set 
along with the interactions between its members can be described by the algebraic 
hyperstructures. 

 Mendel, the father of genetics took the first steps in defining “contrasting 
characters, genotypes in F1 and F2 . . . and setting different laws”. The genotypes of F2 is 
dependent on the type of its parents genotype and it follows certain roles. In [18], Ghadiri et 
al. analyzed the second generation genotypes of monohybrid and a dihybrid with a 
mathematical structure. They used the concept of Hv-semigroup structure in the F2-
genotypes with cross operation and proved that this is an Hv-semigroup. They determined 
the kinds of number of the Hv-subsemigroups of F2-genotypes. In [10], inheritance issue 
based on genetic information is looked at carefully via a new hyperalgebraic approach. 
Several examples are provided from different biology points of view, and it is shown that 
the theory of hyperstructures exactly fits the inheritance issue. 

Another motivation for the study of hyperstructures comes from chemical reactions. 
In [6], Davvaz and Dehghan-Nezhad provided examples of hyperstructures associated with 
chain reactions. In [7], Davvaz et al. introduced examples of weak hyperstructures 
associated with dismutation reactions. In [12], Davvaz et al. investigated the examples of 
hyperstructures and weak hyperstructures associated with redox reactions, see [1, 8, 9, 13]. 
 
2. WEAK ALGEBRAIC HYPERSTRUCTURES 

Weak hyperstructures or Hv-structures were introduced by Vougiouklis at the Fourth AHA 
congress (1990) [28]. The concept of an Hv-structure constitutes a generalization of the 
well-known algebraic hyperstructures (smihypergroup, hypergroup, hyperring and so on). 
Actually some axioms concerning the above hyperstructures such as the associative law, 
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the distributive law and so on are replaced by their corresponding weak axioms. Since then 
the study of Hv-structure theory has been pursued in many directions by Vougiouklis, 
Davvaz, Spartalis, Dramalidis, Hošková, and others. In this section, we present some 
definitions and basic facts about weak hyperstructures [5, 29, 31]. 
 Let H be a non-empty set and )(: HHH     be a hyperoperation. The “·” in H 
is called weak associative if 

x· (y · z) ∩ (x · y) · z ≠∅, for all x, y, z ∈H. 
The “ ·” is called weak commutative if 

.,, Hyxallforxyyx    
The “ ·” is called strongly commutative if 

.,, Hyxallforxyyx   
The hyperstructure (H, ·) is called an Hv-semigroup if “· ” is weak associative. An Hv-
semigroup is called an Hv-group if 

., HaallforHaHHa   
In an obvious way, the Hv-subgroup of an Hv-group is defined. 
 Consider H = {e, a, b, c} and define ∗ on H with the help of the following table: 
 

* e a b C 
e e a b c 
a a e,a c b 
b b c e,b a 
c c b a e,c 

 
 
Then (H, ∗) is an Hv-group which is not a hypergroup. Indeed, we have 

(a ∗ b) ∗ c = c∗ c= {e,c}, a ∗ (b∗ c) = a∗ a= {e, a}. 
Therefore, ∗is not associative. 

A first motivation to study the weak hyperstructures is the following example. 
Let (G, ·) be a group and R be an equivalence relation on G. In G/R consider the 
hyperoperation ⊙ defined by x ⊙y = {z| z ∈x · y}, where x denotes theequivalence class of 
the element x. Then, (G,⊙) is an Hv-group which is not always a hypergroup. 

All the weak properties for hyperstructures can be applied for subsets. Forexample, 
if (H, ·) is a weak commutative Hv-group, then for all non-empty subsets A, B, C of H, we 
have .)()()()(   CBACBAandABBA  To prove this, one has simply to 
take one element of each set. 
 Let ),(,),( 21  HH  be two Hv-groups. A map 21: HHf   is called an Hv-
homomorphism or a weak homomorphism if 

.,,)()()( 1Hyxallforyfxfyxf    
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f  is called an inclusion homomorphism if 
.,),()()( 1Hyxallforyfxfyxf   

Finally, f is called a strong homomorphism or a good homomorphism if 
.,),()()( 1Hyxallforyfxfyxf   

If f is onto, one to one and strong homomorphism, then it is called an isomorphism.
 Moreover, if the domain and the range of f are the same Hv-group, then the 
isomorphism is called an automorphism. We can easily verify that the set of all 
automorphisms of H, defined by Aut H, is a group. 
 Several Hv-structures can be defined on a set H. A partial order on these 
hyperstructures can be introduced, as follows. 

Let (H, ·) and (H, ∗) be two Hv-groups defined on the same set H. We say that “ ·” 
less than or equal to “∗” and we write · ≤ ∗, if there is f ∈ Aut(H,∗) such that x · y ⊆ f(x∗y), 
for all x, y ∈ H. If a hyperoperation is weak associative, then every greater hyperoperation, 
defined on the same set is also weak associative. In [30], the set of all Hv-groups with a 
scalar unit defined on a set with three elements is determined using this property. 

Greater hyperoperation from the one of a given Hv-group defines an Hv-group. The 
weak commutativity is also valid for every greater hyperoperation. We remarkthat this 
statement is not true for hypergroups. 
 Let (H, ·) be an Hv-group. The relation β∗ is the smallest equivalence relation on H 
such that the quotient H/β∗ is a group. β∗ is called the fundamental equivalence relation on 
H. If U denotes the set of all finite products of elements of H, then a relation β can be 
defined on H whose transitive closure is the fundamental relationβ∗. The relation β is 
defined as follows: for x and y in H we write xβy if and only if {x, y}⊆u for some u ∈ U. 
We can rewrite the definition of β∗on H as follows: aβ∗bif and only if there exist z1, . . . , 
zn+1 ∈H with z1 = a, zn+1 = b and u1, . . . , un ∈ U such that {zi, zi+1} ⊆ ui (i = 1, . . . , n). 
Suppose that β∗(a) is the equivalence classcontaining a ∈H. Then, the product ⊙ on H/β∗ is 
defined as follows: 

β∗(a) ⊙β∗(b) = {β∗(c)| c ∈ β∗(a) · β∗(b)} for all a, b ∈ H. 
It is not difficult to see that β∗(a) ⊙ β∗(b) is the singleton {β∗(c)} for all c ∈ β∗(a) · β∗(b). In 
this way H/β∗ becomes a group. 
 Let (H, ·) be an Hv-group. An element x ∈ H is called single if its fundamental class 
is singleton, i.e., β∗(x) = {x}. Denote by SH  the set of all single elements of H. Let (H, ·)  
be an Hv-group and x ∈ SH. Let a ∈ H and take any element v ∈ H such that x ∈ a · v. Then, 

β∗(a) = {h ∈H | h · v = x}. 
Suppose that (H,·) is an Hv-group such that SH is non-empty. Then, the only greater 
hyperoperations · <∗ for which the Hv-groups (H,∗) contain single elements are the ones 
with the same fundamental group, since the fundamental classes aredetermined from the 
products of a single element with the elements of the group. On the other hand, a less 
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hyperoperation ◦ <· can have the same set SH  if only in the products of non-single 
elements the ◦ is less than · . Finally, if ρ and σ areequivalence relations with ρ < σ such 
that H/ρ and H/σ are non-equal groups, then they can not have both single elements. 
 Let (H,·) be an Hv-group with (left, right) identity elements. Then, H is called (left, 
right) reversible in itself when any relation c∈a· b implies the existence of a left inverse a′ 
of a and a right inverse b′ of b such that b ∈a′ · c and a ∈ c · b′. The Hv-group (H, ·) is 
called feebly quasi-canonical if it is regular, reversible and satisfies the following 
conditions: 
 For each a ∈H, if a′, a′′ are inverses of a, then for each x ∈H, we have: 

a′ · x = a′′ · x and x · a′ = x · a′′. 
A feebly quasi-canonical Hv-group H is called feebly canonical if it is strongly 
commutative. 
 
3. CHEMICAL REACTIONS  

Chemistry is the study of matter and of the changes matter undergoes. A chemicalequation 
describes the products of a reaction that from the starting molecules oratoms. Chemistry 
seeks to predict the products that result from the reaction of specificquantities of atoms or 
molecules. Chemists accomplish this task by writing andbalancing chemical equations. 
Symmetry is very important in chemistry researchesand group theory is the tool that is used 
to determine symmetry. Classical algebraicstructures (group theory) is a mathematical 
method by which aspects of a moleculessymmetry can be determined. Algebraic 
hyperstructures are generalizations of classical algebraic structures. In a classical algebraic 
structure, the composition of twoelements is a set. A motivation for the study of 
hyperstructures comes from chemical reactions. In [6], Davvaz and Dehghan-Nezhad 
provided examples of hyperstructures associated with chain reactions. In [7], Davvaz et al. 
introduced examples of weak hyperstructures associated with dismutation reactions. In 
[12], Davvaz et al. investigated the examples of hyperstructures and weak hyperstructures 
associated withredox reactions. In this section we review these examples. For more details 
we referto [6, 7, 12]. 
 
3.1 CHAIN REACTIONS 

Chain reaction, in chemistry and physics, process yielding products that initiatefurther 
processes of the same kind, a self-sustaining sequence. Examples from chemistry are 
burning a fuel gas, the development of rancidity in fats, “knock” in 
internalcombustionengines, and the polymerization of ethylene to polyethylene. The 
bestknownexamples in physics are nuclear fissions brought about by neutrons. 
Chainreactions are in general very rapid but are also highly sensitive to reaction 
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conditions,probably because the substances that sustain the reaction are easily affectedby 
substances other than the reactants themselves. An atom or group of atomspossessing an 
odd (unpaired) electron is called radical. Radical species can be electricallyneutral, in 
which case they are sometimes referred to as free radicals. Pairsof electrically neutral “free” 
radicals are formed via homolytic bond breakage. Thiscan be achieved by heating in non-
polar solvents or the vapor phase. At elevatedtemperature or under the influence ultraviolet 
light at room temperature, all molecularspecies will dissociate into radicals. Homolsis or 
homolytic bond fragmentationoccurs when ( in the language of Lewis theory ) a two 
electron covalent bond breaks and one electron goes to each of the partner species. 
For example, chlorine, Cl2, forms chlorine radicals (Cl•) and peroxides form 
oxygenradicals. 

XX2X 
ClCl2 Cl 

R OORR O 

Radical bond forming reactions (radical couplings) are rather rare processes. The reason is 
because radicals are normally present at low concentrations in a reactionmedium, and it is 
statistically more likely they will abstract a hydrogen, or undergoanother type of a 
substitution process, rather than reacting with each other by coupling.And as radicals are 
uncharged, there is little long range columbic attraction between two radical centers. 
Radical substitution reactions tend to proceed as chainreaction processes, often with many 
thousands of identical propagation steps. Thepropensity for chain reactivity gives radical 
chemistry a distinct feel compared withpolar Lewis acid/base chemistry where chain 
reactions are less common. Methanecan be chlorinated with chlorine to give chloromethane 
and hydrogen chloride. Thereaction proceeds as a chain, radical, substitution mechanism. 
The process is a littlemore involved, and three steps are involved: initiation, propagation 
and termination: 
 
(1) Cl22Cl• 

(1) is called chain-initiating step. 
(2) Cl•+ CH4HCl+ CH•

3 
(3) CH•

3 + Cl2 CH3Cl + Cl• 
then (2), (3), (2), (3), etc, until finally: 
(2) and (3) are called chain-propagating steps. 

(4) Cl•+ Cl•Cl2 or 
(5) CH•

3 + CH•
3CH3CH3 or 

(6) CH•
3 + Cl•CH3Cl. 
(4), (5) and (6) are called chain-terminating steps. 
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 First in the chain of reactions is a chain-initiating step, in which energy is 
absorbedand a reactive particle generated; in the present reaction it is the cleavage of 
chlorineinto atoms (Step 1).There are one or more chain-propagating steps, each of which 
consumes a reactive particle and generates another; there they are the reaction ofchlorine 
atoms with methane (Step 2), and of methyl radicals with chlorine (Step3). 

A chlorine radical abstracts a hydrogen from methane to give hydrogen chloride 
and a methyl radical. The methyl radical then abstracts a chlorine atom (a chlorineradical) 
from Cl2 to give methyl chloride and a chlorine radical... which abstractsa hydrogen from 
methane... and the cycle continues... Finally there are chainterminatingsteps, in which 
reactive particles are consumed but not generated; inthe chlorination of methane these 
would involve the union of two of the reactiveparticles, or the capture of one of them by the 
walls of the reaction vessel. 
 The halogens are all typical non-metals. Although their physical forms 
differfluorine and chlorine are gases, bromine is a liquid and iodine is a solid at room 
temperature,each consists of diatomic molecules; F2,Cl2,Br2 and I2. The halogens all react 
with hydrogen to form gaseous compounds, with the formulas HF, HCl, HBr and HI all of 
which are very soluble in water. The halogens all react with metals to give halides. 
 

..  ..    ..    ..    ..   ..    ..    .. 
:F - F: ,  : Cl - Cl: ,  :Br - Br: ,  :I - I:   ..   ..    ..    ..    ..   ..    ..    .. 

 
 The reader will find in [22] a deep discussion of chain reactions and halogens. 
During chain reaction 

ABBA
lightorheat

222   
there exist all molecules A2, B2, AB and whose fragment parts A•, B• in experiment. The 
elements of this collection can by combine with each other. All combinational 
probabilityfor the set H = {A•, B•, A2, B2, AB} to do without energy can be displayed as in 
Table 1. 
 

Table 1. Chain Reactions. 

  A* B* A2 B2 AB 
A* A*, A2 A*,B*, AB A*, A2 A*,B2, B*,AB A*,AB,A2,B* 

B* A*, B*,AB B*,B2 A*,B*,AB, A2 B*,B2 A*,B*,AB,B2 

A2 A*, A2 A*,B*,AB, A2 A*, A2 A*,B*,A2,B2,AB A*,B*,A2,AB 
B2 A*,B*,B2, AB B*,B2 A*,B*,A2,B2,AB B*,B2 A*,B*,B2,AB 
AB A*,AB,A2,B* A*,B*,AB,B2 A*,B*,A2,AB A*,B*,B2,AB A*,B*,A2,B2,AB 
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 Then, (H,⊕) is an Hv-group [6]. Moreover, X = {A•,A2} and Y = {B•,B2} are only 
Hv-subgroups of (H,⊕) [6]. If we consider A = H and B ∈ {F, CL, Br, I} (for example B = 
I), the complete reactions table becomes Table 2. 
 

Table 2. For H and I. 

  H• I• H2 I2 HI 
H° H•, H2 H•, I•, HI H•,H2 H•,I2,I•,HI H•, HI ,H2, I• 
I• H•, I•, HI I•, I2 H•, I•, HI, H2 I•,I2 H•,I•,HI,I2 
H2 H•, H2 H•, I•, HI, I2 H•,H2 H•,I•,H2,I2,HI H•,I•,H2,HI 
I2 H•, I•, I2, HI H•, I2 H•,I•,H2,I2,HI H•,I2 H•,I•,I2,HI 
HI H•, HI ,H2, I• H•, I•, HI, I2 H•, I•, H2, HI H•,I•,H2,HI H•,I•,H2,I2,HI 

 
 

3.2  DISMUTATION REACTIONS 

In a redox reactions or oxidation-reduction reaction, electrons are transferred fromone 
reactant to another. Oxidation refers to the loss of electrons, while reductionrefers to the 
gain of electrons. A substance that has strong affinity for electronsand tends to extract them 
from other species is called an oxidizing agent or an oxidant. A reducing agent, or 
reductant, is a reagent that readily donates electronsto another species [26]. A half reaction 
is a reduction or an oxidation reaction. Twohalf-reactions are needed to form a whole 
reaction. Redox reactions have a numberof similarities to acid-base reactions. Like acid-
base reactions, redox reactions area matched set; you don’t have an oxidation reaction 
without a reduction reactionhappening at the same time. When the change in free energy 
(ΔG) is negative, aprocess or chemical reaction proceeds spontaneously in the forward 
direction. WhenΔG is positive, the process proceeds spontaneously in reverse. In 
electrochemical reactions ΔG = −nFE, where n, F and E are number of electrons 
transferred inthe reaction, Faraday constant and cell potential, respectively [26]. 
 The change in the oxidation state of a species lets you know if it has undergone 
oxidation or reduction. Oxidation is the process in which an atom undergoes an algebraic 
increase in oxidation number, and reduction is the process in which anatom undergoes an 
algebraic decrease in oxidation number. On this basis, oxidationreduction is involved in the 
reaction; 

O2 + C  CO2 
In the reaction, oxidation number of the C atom increases from zero to +4 whereas, the 
oxidation number of O atom decreases from zero to −2. Furthermore, the total increase in 
the oxidation number equals to the total decrease in oxidation number [23]. 
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Disproportion at ion or dismutation is used to describe two particular types of chemical 
reaction: 

(1) A chemical reaction of the type 2AA+A, where A,AandAare different chemical 
pieces [27]. Most but not all are redox reactions. For example 2H2OH3O+ + OH− 
is a disproportionation, but is not a redox reaction. 

(2) A chemical reaction in which two or more atoms of the same element 
originallyhaving the same oxidation state react with other chemical(s) or themselves 
to give different oxidation numbers. In another word, disproportionation is a 
reaction in which a species is simultaneously reduced and oxidized to form two 
differentoxidation numbers. The reverse of disproportionation is called 
comproportionation. Comproportionation is a chemical reaction where two 
reactants, each containing thesame element but with a different oxidation number, 
will form a product with anoxidation number intermediate of the two reactants. For 
example, an element tin in the oxidation states 0 and +4 can comproportionate to the 
state +2. The standardreduction potentials of all half reactions are:  

VEVEVE SnSnSnSnSnSn 009.0,136.0,154.0 /// 4224     
Therefore, the comproportionation reaction is spontaneous. 

 
  24 2 SnSnSn  

 All combinational probability for the set S = {Sn, Sn2+, Sn4+} to do withoutenergy 
can be displayed as follows. The major products are written in Table 3. 
 

Table 3.Dismutation Reactions Sn. 

  Sn Sn2+ Sn4+ 

Sn Sn Sn,Sn2+ Sn2+ 

Sn2+ Sn,Sn2+ Sn2+ Sn2+,Sn4+ 

Sn4+ Sn2+ Sn2+,Sn4+ Sn4+ 

 
Then, (S,⊕) is weak associative. Also, we can conclude that ({Sn, Sn

2+},⊕) is a 
hypergroup and ({Sn2+, Sn4+},⊕) is an Hv-semigroup [7]. Chlorine gas reacts with dilute 
hydroxide to form chloride, chlorate and water.The ionic equation for this reaction is as 
follows [19]: 

OHClOClOHCl 232 3563    
As a reactant, the oxidation number of the elemental chlorine, chloride and chlorate are 0, 1 
and +5, respectively. Therefore, chlorine has been oxidized to chlorate whereas; it has been 
reduced to chloride [19]. 
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 Indium has three oxidation states 0,+1 and +3. The standard reduction potentialsof 

all half reactions are: .338.0,147.0,434.0 /3//3 VEVEVE InInInInInIn     
According to the standard reduction potentials, disproportionationreaction of In+ is 
spontaneous. All combinational probability for the set S ={In, In+, In3+} to do without 
energy can be displayed as Table 4. 
 

Table 4. Dismutation Reactions In. 

  In In+ In3+ 
In In In, In+ In, In3+ 
In+ In, In+ In, In3+ In+, In3+ 
In3+ In, In3+ In+, In3+ In3+ 

 
 

 Then, (S,⊕) is weak associative. Clearly, ⊕is commutative. Also, the reproduction 
axiom holds. Therefore, (S,⊕) is a commutative Hv-group [7]. Vanadium forms a number 
of different ions including V, V 2+, V 3+, V O2+ and V O2+. The oxidation states of these 
species are 0, +2, +3, +4 and +5, respectively. The standard reduction potentials of all 
corresponding half reactions are: 
 

 
 

 All combinational probability for the set S = {V, V 2+, V 3+, V O2+, V O2+}to 
dowithout energy in acidic media can be displayed as following table. When thereactants 
are added in appropriate stoichiometric ratios. For example vanadium(V ) reacts with V O2+ 
as follows: 

OHVHOVV 2
3

2 651232    
Then, (S,⊕) is a hyperstructure. The hyperstructures  

({V, V 2+},⊕), ({V 2+, V 3+},⊕),({V 3+, V O2+},⊕) and ({V O2+, V O+2},⊕) 
are hypergroups [7]. Moreover, we have: 

({V, V 2+},⊕)({V 2+, V 3+},⊕)({V 3+, V O2+},⊕)({V O2+, V O2+},⊕). 
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 The major products between all forms of vanadium are showed in Table 6. It is 
assumed the reactants are added together in 1 : 1 mole ratios. 

 
Table 5. Vanadium. 

  V V2+ V3+ VO2+ VO2
+ 

V V V, V2+ V2+ V2+, V3+ V3+ 
V2+ V,V2+ V2+ V2+, V3+ V3+ V3+, VO2+ 

V3+ V2+ V2+, V3+ V3+ V3+,V2+ VO2+ 
VO2+ V2+, V3+ V3+ V3+, VO2+ VO2+ VO2+, VO2

+ 
VO2

+ V3+ V3+, VO2+ VO2+ VO2+, VO2
+ VO2

+ 
 
 

Table 6.The Major Products between all Forms of Vanadium. 
 

  V V2+ V3+ VO2+ VO2
+ 

V V V, V2+ V, V2+ V2+ V2+,V3+ 
V2+ V, V2+ V2+ V2+, V3+ V3+ V3+,VO2+ 
V3+ V,V2+ V2+, V3+ V3+ V3+,VO2+ VO2+ 

VO2+ V2+ V3+ V3+,VO2+ VO2+ VO2+,VO2
+ 

VO2
+ V2+, V3+ V3+,VO2+ VO2+ VO2+,VO2

+ VO2
+ 

 
 

Therefore, (S,⊕) is a hyperstructure. The hyperstructures  
({V, V 2+},⊕), ({V 2+, V 3+},⊕),({V 3+, V O2+},⊕) and ({V O2+, V O+2},⊕)  

are hypergroups. Moreover, we have: 
({V, V 2+},⊕)  ({V 2+, V 3+},⊕)({V3+, V O2+},⊕)({V O2+, V O2+},⊕). 

 
3.3 REDOX REACTIONS 

Redox (reduction-oxidation) reactions include all chemical reactions in which atomshave 
their oxidation state changed. This can be either a simple redox process, such as the 
oxidation of carbon to yield carbon dioxide (CO2) or the reduction of carbon by hydrogen 
to yield methane (CH4), or a complex process such as the oxidation of glucose (C6H12O6) in 
the human body through a series of complexelectron transfer processes. Oxidation is the 
loss of electrons or an increase in oxidation state, and reduction is the gain of electrons or a 
decrease in oxidation state by an analyte (molecule, atom or ion). There can not be an 
oxidation reactionwithout a reduction reaction happening simultaneously. Therefore the 
oxidation alone and the reduction alone are each called a half-reaction, because two half 
reactions always occur together to form a whole reaction [23]. 
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 Each half-reaction has a standard reduction potential (E0), which is equal to 
thepotential difference at equilibrium under standard conditions of an electrochemicalcell in 
which the cathode reaction is the half-reaction considered, and the anode isa standard 
hydrogen electrode (SHE). For a redox reaction, the potential of the cellis defined by: 
E0

cell= E0
cathode− E0

anode. If the potential of a redox reaction (E0
cell)is positive, this reaction 

will spontaneous [23]. For example, consider the redox reaction of Ag2+ with Ag: 
Ag2+ + Ag Ag+. 

We can write two half-reactions for this reaction: 
(1) Ag2++ e Ag+, 
(2) AgAg+ + e. 
 The E0 of the first reaction (E0

cathode) is 1.98 V (vs. SHE) and the E0of the second 
reaction (E0

anode) is 0.799 V (vs. SHE) [26]. Therefore, in this case, the E0
cell(E0

cathode− 
E0

anode= 1.181) is positive and the above redox reaction between Ag2+and Ag is 
spontaneous. Silver (Ag) is a transition metal and has a large number of applications in 
jewelry, electrical contacts and conductors, catalysis of chemical reactions, disinfectants 
and microbiocides. Silver plays no known natural biological role in humans and itself is not 
toxic, but most silver salts are toxic, and some may be carcinogenic. Ag can be in three 
oxidation state: Ag (0), Ag (I) and Ag (II). Among Ag (I) andAg (II), Ag (I) is very well 
characterized and many simple ionic compounds areknown containing Ag+. However, AgF2 
is known which Ag has oxidation state ofII in it. AgF2 is strongly oxidizing and a good 
fluorimating agent. But Ag (II) ismore stable in complex forms. A number of Ag (II) 
complexes have been obtainedby oxidation of Ag (I) salts is aqueous solution in the 
presences of the ligand. Forexample, [Ag (pyridine)4]2+ and [Ag (bi pyridine)2]2+ are quite 
stable. The +1oxidation state is the best known oxidation state of silver. Ag+ salts are 
generallyinsoluble in water with the exception of nitrate, fluoride and perchlorate. 
Moststable Ag (I) complexes have a linear structure [25]. 
 As described above, Ag species with different oxidation state can react with 
themselves. All possible products for spontaneous reactions are presented in Table7. 
 

Table 7.Redox Reactions Ag. 

  Ag2+ Ag+ Ag 
Ag2+ Ag2+ Ag+, Ag2+ Ag+ 

Ag+ Ag+, Ag2+ Ag+ Ag, Ag+ 

Ag Ag+ Ag+, Ag Ag 
 

 The Table 7 is isomorphic to Table 3 of dismutation reactions. Therefore, ⊕ is 
weak associative. Also, we conclude that ({Ag2+, Ag+},⊕) and ({Ag+, Ag},⊕) are 
hypergroups. 
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Copper (Cu) is a ductile metal with very high thermal and electrical conductivity. It is used 
as a conductor of heat and electricity, a building material, anda constituent of various metal 
alloys. Cu can be in four oxidation state: Cu (0),Cu(I), Cu (II) and Cu (III). In nature, 
copper mainly is as CuFeS2, with oxidationstate of II for Cu. Also, Cu can be as Cu2S or 
Cu2O with the oxidation stateof I. Pure copper is obtained by electrolytic refining using 
sheets of pure copper as cathode and impure copper as anode. In this process different ions 
of Cu, Cu(II)or Cu(I), reduced to Cu(0) at cathode. Cu(III) is generally uncommon, 
howeversome its complexes are known [25]. 
 The standard reduction potential (E0) for conversion of each oxidation state to 
another are: E0 (Cu3+/Cu2+) = 2.4 V ,E0 (Cu2+/Cu+)= 0.153 V , E0 (Cu2+/Cu)=0.342 V and E0 
(Cu+/Cu)= 0.521 V , where potentials are versus SHE [26]. Accordingto these standard 
potentials, and similar to example of Ag, the following reactions are spontaneous: 
(1) Cu3+ + Cu+Cu2+, 
(2) Cu3+ + Cu Cu2+ + Cu+. 
 Therefore, all possible products in reactions between oxidation states of Cu which 
can be produced spontaneously are listed in Table 8. 

 
Table 8.Redox Reactions Cu. 

⊙ Cu Cu+ Cu2+ Cu3+ 

Cu Cu Cu, Cu+ Cu2+, Cu Cu2+ ,Cu+ 

Cu+ Cu, Cu+ Cu+ Cu2+, Cu+ Cu2+ 

Cu2+ Cu, Cu2+ Cu2+, Cu+ Cu2+ Cu2+, Cu3+ 
Cu3+ Cu+ , Cu2+ Cu2+ Cu2+ , Cu3+ Cu3+ 

 
 In Table 8, the hyperoperation ⊙ is weak associative. Hence, we have an Hv-
semigroup. The hyperstructures  

({Cu, Cu+},⊙), ({Cu, Cu2+},⊙), ({Cu+, Cu2+},⊙) and ({Cu2+, Cu3+},⊙)  
are hypergroups. Let H be a set with three elements. OnH, we define the following 
hyperoperation: x ⋆ y = {x, y}, for all x, y ∈ H. 
It is easy to see that ⋆is associative and so (H, ⋆) is a hypergroup. Now, we have 

({Cu, Cu+, Cu2+},⊙)(H, ⋆). 
Note that ({Cu+, Cu2+, Cu3+},⊙) is not semihypergroup. Americium (Am) is a transuranic 
radioactive chemical element in actinide series. It has four oxidation states of 0, 2, 3 and 4. 
The standard reduction potential (E0) for conversion of each oxidation state to another are: 
E0 (Am4+/Am3+)= 2.6 V, E0 (Am3+/Am2+) = −2.3 V, E0 (Am3+/Am) = −2.048 V and E0 

(Am2+/Am)=−1.9 V , where potentials are versus SHE [26]. Therefore, the following 
reaction is spontaneous: 

Am4+ + Am2+Am3+. 
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 Therefore, all possible combinations for different oxidation states of Am which can 
be produced without energy are presented in Table 9. 
 

 
Table 9. Redox Reactions Am. 

  Am Am2+ Am3+ Am4+ 

Am Am Am, Am2+ Am, Am3+ Am, Am4+ 

Am2+ Am, Am2+ Am2+ Am2+, Am3+ Am3+ 

Am3+ Am, Am3+ Am2+,Am3+ Am3+ Am3+,Am4+ 

Am4+ Am, Am4+ Am3+ Am3+, Am4+ Am4+ 

 
 
 Regarding to Table 9, similar to Table 8, we have  

({Am, Am2+, Am3+},⊗)(H, ⋆). 
Note that ({Am2+, Am3+, Am4+},⊗) is not semihypergroup. 

Gold (Au) is a dense, soft, shiny, malleable and ductile metal and can be in 
fouroxidation states of Au (0), Au (I), Au (II) and Au (III). Au (III) is common forgold 
compounds and exist as: Au2O3, AuF3, AuCl3, AuBr3 and Au (OH)3. Au (I)is much less 
stable in solution and is stabilized in complexes [25]. 

The standard reduction potential (E0) for conversion of each oxidation state 
toanother are: E0 (Au3+/Au+)= 1.401 V , E0 (Au3+/Au)= 1.498 V , E0 (Au2+/Au+)=1.8 V and E0 
(Au+/Au)= 1.692 V , where potentials are versus SHE [26]. Accordingto these standard 
potentials, the following reaction is spontaneous: 

Au2+ + Au Au+. 
 Therefore, the major products in reactions between oxidation states of Au whichcan 
be produced spontaneously are listed in Table 10. 

 
Table 10. Redox Reactions Au. 

⊎ Au Au+ Au2+ Au3+ 

Au Au Au, Au+ Au+ Au, Au3+ 

Au+ Au, Au+ Au+ Au+, Au2+ Au+, Au3+ 

Au2+ Au+ Au+, Au2+ Au2+ Au2+, Au3+ 

Au3+ Au, Au3+ Au+, Au3+ Au2+, Au3+ Au3+ 

 
 

The Hv-semigroups defined in Tables 9 and 10 are isomorphic. 
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