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ABSTRACT Stereoisograms of octahedral complexes are classified into five types (type I–
type V) under the action of the corresponding RS-stereoisomeric group. Their enumeration is 
accomplished in a type-itemized fashion, where Fujita’s proligand method developed 
originally for combinatorial enumeration under point groups (S. Fujita, Theor. Chem. Acc., 
113, 73–79 (2005)) is extended to meet the requirement of Fujita’s stereoisogram approach. 
The cycle index with chirality fittingness (CI-CF) of the point group Oh is modulated by 
taking account of the CI-CF for calculating type-V quadruplets contained in stereoisograms. 
The modulated CI-CF is combined with a CI-CF of the maximum chiral point group (O), a 
CI-CF of the maximum RS-permutation group, a CI-CF of the maximum ligand-reflection 
group, and a CI-CF of the RS-stereoisomeric group, so as to generate CI-CFs for evaluating 
type-I to type-V quadruplets. By introducing ligand-inventory functions into the CI-CFs, the 
numbers of quadruplets of octahedral complexes are obtained and shown in tabular forms. 
Several stereoisograms for typical complexes are depicted. Their configuration indices and 
C/A-descriptors are discussed on the basis of Fujita’s stereoisogram approach. 

 
KEYWORDS enumeration • stereoisogram • octahedral complex • 
RSstereoisomeric group. 

 

1. INTRODUCTION 

Fujita’s stereoisogram approach has been developed by defining RS-stereoisomeric groups 
as algebraic formulations [1, 2] and stereoisograms as their diagrammatic expressions [3, 4, 
5]. Diagrammatically speaking, the vertical direction of a stereoisogram is concerned with 
the chiral aspect for supporting Le Bel’s way (dissymmetry, chirality) [6, 7] and the 
horizontal direction of a stereoisogram is concerned with the RS-stereogenic aspect for 



114                                                                                                                               FUJITA 

supporting van’t Hoff’s way (asymmetry, stereogenicity) [8, 9]. Thereby, these two ways 
have been integrated to reach Aufheben, so that the theoretical foundations of modern 
stereochemistry and the terminology of stereochemical nomenclature (e.g., the Cahn-In 
gold-Prelog system [10, 11] and the pro-R/pro-S system [12, 13, 14]) have been thoroughly 
revised, as discussed in recent articles [15, 16, 17, 18].  
 A quadruplet of RS-stereoisomers contained in a stereoisogram can be regarded as 
an equivalence class under the action of an RS-stereoisomeric group. This means that the 
number of inequivalent quadruplets can be combinatorially enumerated by extending 
Fujita’s unit-subducedcycle- index (USCI) approach [19, 20] to meet the requirement of 
Fujita’s stereoisogram approach, if the data of the RS-stereoisomeric group (e.g., mark 
tables, inverse mark tables, and subduction tables) are available. According to this 
guideline, symmetry-itemized enumerations of quadruplets of RS-stereoisomers have been 
reported by starting from a tetrahedral skeleton [21, 22], an allene skeleton [23, 24], and an 
oxirane skeleton [25, 26, 27]. It is to be noted, however, that mark tables, inverse mark 
tables, and subduction tables for the RS-stereoisomeric groups have been obtained by rather 
tedious procedures even in the enumerations based on the above-mentioned skeletons of 
ligancy 4. 
 As for the action of point groups, derivatives to be counted can be classified into 
two categories, i.e., chiral and achiral derivatives. According to this classification, chirality-
itemized enumeration for aiming at itemization into chiral and achiral derivatives has been 
accomplished by using Fujita’s proligand method [28], which has been developed as a 
simpler method for gross enumeration than those supported by Fujita’s USCI approach for 
symmetry-itemized enumeration [19, 20]. Note that Fujita’s proligand method applied to 
such chirality-itemized enumeration does not requires mark tables, inverse mark tables, and 
subduction tables, which are not always available. 
 In a similar way to chirality-itemized enumeration under the action of point groups, 
it is desirable to investigate type-itemized enumeration of inequivalent quadruplets under 
the action of an RS-stereoisomeric group, because such quadruplets of RS-stereoisomers as 
represented by stereoisograms have been proven to be categorized into five types (type I to 
type V) [2]. Type-itemized enumerations of quadruplets of RS-stereoisomers based on 
inclusion-exclusion procedures [29, 30] and on more systematic procedures [31, 32] have 
been reported by using tetrahedral and allene derivatives as probes of ligancy 4. 
 Because the more systematic procedures [31, 32] are expected to have wide 
applicability, they should be examined extensively by being applied to more complicated 
derivatives. The present article is devoted to the application of one of the procedures (using 
cycle indices with chirality fittingness modulated by type-V quadruplets [32]) to octahedral 
complexes of ligancy 6. 
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2. RS-STEREOISOMERIC GROUPS FOR OCTAHEDRAL COMPLEXES 

2.1. ALGEBRAIC FORMULATION OF RS-STEREOISOMERIC GROUPS 

Although the algebraic formulation of an RS-stereoisomeric group Ilh ˆ~O  for characterizing 

an octahedral skeleton 1 has been described in a previous report [33], a minimal set of data 
should be cited here for the sake of convenience. 
 By starting from the point group Oh for characterizing an octahedral skeleton 1, the 
RS- stereoisomeric group Ilh ˆ~O  is represented by the following coset decomposition: 

IliIlh
ˆO~OOOO ˆ~                                                                (1) 

where the group O is the maximal chiral subgroup of the point group of Oh, the first 
representative I (omitted for the sake of simplicity) is an identity operation, the second 
representative i is an inversion operation, the third representative l~ is an RS-permutation 
operation, and the fourth representative Î is a ligand-reflection operation. 
 

 
 

Figure 1. Elementary stereoisogram of an octahedral skeleton [33]. 
 
 The 96 elements of the RS-stereoisomeric group Ilh ˆ~O  (Eq. 1) are collected in Figure 
2. According to the coset decomposition represented by Eq. 1, they are categorized into 
four parts, as denoted by large gray letters (A, B, C, and D): 
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1. The upper left part denoted by a gray letter A in Figure 2 corresponds to the coset O 
(= OI). When the representative of this coset is selected to the identity element I 
which is assigned to the representative skeleton 1, the other operations contained in 
the coset O(= OI) generate respective homomers of 1. The operations collected in 
the upper left part (A) are called rotations. 

2.  The lower left part denoted by a gray letter B in Figure 2 corresponds to the coset 
Oi. When the representative of this coset is selected to a reflection σh(1) in place of i, 
a mirror-image skeleton 1  is generated as a representative (Figure 1). The other 
operations contained in the coset Oi (= Oσh(1)) generate respective homomers of 1 . 
The operations collected in the lower left part (B) are called reflections, which 
connote rotoreflections (e.g., S4(1)) and an inversion (i) in addition to mirror-image 
operations. 

3. The upper right part denoted by a gray letter C in Figure 2 corresponds to the coset 
l~O . When the representative of this coset is selected to an RS-permutation in place 

of l~ , an RS-permuted skeleton 2 is generated as a representative (Figure 1). The 
other operations contained in the coset )σ~O(~O )1(hl   generate respective homomers 

of 2. The operations collected in the upper right part (C) are called RS-permutations. 
4. The lower right part denoted by a gray letter D in Figure 2 corresponds to the coset 

 ˆOI . When the representative of this coset is selected to a ligand reflection Î , an 
RS-ligand reflected skeleton 2  is generated as a representative (Figure 1). The other 
operations contained in the coset  ˆOI  generate respective homomers of 2 . The 
operations collected in the lower right part (D) are called ligand reflections. 

  
 The RS-stereoisomeric group Ilh ˆ~O   collected in Figure 2 has 96 elements (order 96) 

and contains the following subgroups of order 48. 
                           The maximum point group (A + B): 

Oh = O+Oi                                                (2) 
                           The maximum RS-permutation group (A + C): 

l~O  = O + l~O ,                                              (3) 

                           The maximum ligand-reflection group (A + D): 

ÎO = O+  ˆOI ,                                                (4) 
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Figure 2. RS-Stereoisomeric group Ilh ˆ~O  for an octahedral skeleton. The elements of the 

coset O (= OI) are called rotations, the elements of the coset Oi are called (roto) reflections, 
the elements of the coset l~O  are called RS-permutations, and the elements of the coset ÎO  
are called ligand reflections.[33] 
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where these subgroups of order 48 contain the point group O of order 24 commonly. It 
should be noted that the RS-stereoisomeric group Ilh ˆ~O  contains other subgroups of order 

48, which do not contain the point group O of order 24. For example, the RS-stereoisomeric 
group Id ˆ~T


 derived from the point group Td (cf. Table 1 of [21]) is of order 48 and does 

not contain O, although it is a subgroup of Ilh ˆ~O .  
 According to Eqs. 1, 2, 3, and 4 in addition to the common chiral subgroup O, a 
subgroup G of the RS-stereoisomeric group Ilh ˆ~O  is classified into one of the following five 

types: 
 type I:    G  ÎO  (G  O) 

 type II:  G  l~O  (G  O) 

 type III: G  O 
 type IV: G  Ilh ˆ~O  (G  O, G  l~O , G  ÎO , G   Oh)                                        (5) 

 type V:  G  Oh (G  O) 
                                                                        
2.2. STEREOISOGRAMS AS DIAGRAMMATIC EXPRESSIONS OF RS-STEREOISOMERIC 
GROUPS  
 
The four skeletons collected in Figure 1 are interchanged into one another on the action of 
the RS-stereoisomeric group Ilh ˆ~O  (Eq. 1) and its subgroups listed in Eqs. 2, 3, and 4. In 

general, a quadruplet of four skeletons linked with double-headed arrows (e.g., Figure 1) is 
called an elementary stereoisogram. The elementary stereoisogram of octahedral skeletons 
(Figure 1) is a basic diagram for giving stereoisograms of octahedral derivatives as 
promolecules, where a set of proligands (abstract ligands with chirality/achirality, e.g, A, B, 
C, X, Y, and Z for achiral proligands, as well as p/ p  , q/ q  , r/ r  , and s/ s   for a pair of 
chiral proligands of opposite chirality senses) is placed on the six positions of each of the 
skeletons, as exemplified in Figure 3. Note that an achiral proligand (e.g., A) on a position 
with an overlined number (e.g., 1) remains unchanged, because A  is identical with A itself. 
On the other hand, a chiral proligand (e.g., p or p ) on a position with an overlined number 

(e.g., 1 ) is changed into its mirror-image proligand (e.g., p  or p), where p  = p 
 Each of the resulting quadruplets of promolecules (octahedral derivatives) belongs 
to a subgroup G of the RS-stereoisomeric group Ilh ˆ~O , so that it is characterized to be one of 

five types (type I to type V). In other words, each stereoisogram can be categorized into one 
of type I to type V, as shown in Figure 3. 
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Figure 3. Stereoisograms for representing RS-stereoisomers of five types [4]. 
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For the purpose of applying RS-stereoisomeric groups to qualitative discussions, the 
following terminology based on stereoisograms is adopted [34]. 
 

1. The relationship between 1 and 1  (or between 2 and 2 ) in the vertical direction of 
Figure 1 is called a (self-)enantiomeric relationship, where the corresponding 
attribute is called chirality (or achirality). The interconversion between 1 and  1  (or 
between 2 and 2 ) is brought about by reflections contained in the point group Oh, 

2. The relationship between 1 and 2 (or between 1  and 2  ) in the horizontal direction 
of Figure 1 is called a (self-)RS-diastereomeric relationship, where the 
corresponding attribute is called RS-stereogenicity (or RS-astereogenicity). The 
interconversion between 1 and 2  (or between 1  and 2 ) is brought about by RS-
permutations contained in the RS-permutation group l~O . 

3. The relationship between 1 and 2  (or between 2 and 1 ) in the diagonal direction of 
Figure 1 is called a (self-)holantimeric relationship, where the corresponding 
attribute is called sclerality (or asclerality). The interconversion between 1 and 2   
(or between 2 and 1 ) is brought about by ligand reflections contained in the ligand-
reflection group ÎO  . 

 
 A type-I stereoisogram is characterized by equality symbols in the diagonal 
direction, so that the enantiomeric relationship is coincident with the RS-diastereomeric 
relationship in the type-I stereoisogram (cf. Figure 3). This means that the quadruplet of 
promolecules contained in the type-I stereoisogram belongs to a type-I subgroup shown in 
Eq. 5. For example, the promolecule 3 is identical with its holantimer 4  (= 3), so that it is 
self-holantimeric and exhibits asclerality. According to the terminology described above, 
the type-I stereoisogram is chiral, RS-stereogenic, and ascleral, so that it is characterized by 
a type index [−,−,a]. 
 A type-II stereoisogram is characterized by equality symbols in the horizontal 
direction, so that the enantiomeric relationship is coincident with the holantimeric 
relationship in the type- II stereoisogram (cf. Figure 3). This means that the quadruplet of 
promolecules contained in the type-II stereoisogram belongs to a type-II subgroup shown in 
Eq. 5. For example, the promolecule 5 is identical with its RS-diastereomer 5 (= 5) so that 
it is self-RS-diastereomeric and exhibits RS-astereogenicity. According to the terminology 
described above, the type-II stereoisogram is chiral, RS-astereogenic, and scleral, so that it 
is characterized by a type index [−,a,−]. 
 A type-III stereoisogram is characterized by the absence of equality symbols in all 
directions, so that it belongs to a type-III subgroup shown in Eq. 5. For example, the 
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promolecules 6, 7, 6 , and 7  are different from one another (Figure 3). Hence, the type-III 
stereoisogram is chiral, RS-stereogenic, and scleral, so that it is characterized by a type 
index [−,−,−]. 
 A type-IV stereoisogram is characterized by the presence of equality symbols in all 
directions, so that it belongs to a type-IV subgroup shown in Eq. 5. For example, the 
promolecules 8, 8 , 8  and 8are identical with one another (Figure 3). Hence, the type-IV 
stereoisogram is achiral, RS-astereogenic, and ascleral, so that it is characterized by a type 
index [a,a,a]. 
 A type-V stereoisogram is characterized by equality symbols in the vertical 
direction, so that the RS-diastereomeric relationship is coincident with the holantimeric 
relationship in the type-V stereoisogram (cf. Figure 3). This means that the quadruplet of 
promolecules contained in the type-V stereoisogram belongs to a type-V subgroup shown 
in Eq. 5. For example, the promolecule 9 (or 10) is identical with its enantiomer 9  (= 9) (or 
10 (= 10)), so that it is self-enantiomeric and exhibits achirality. The relationship between 9 
and 10 is an RS-diastereomeric relationship. According to the terminology described above, 
the type-V stereoisogram is achiral, RS-stereogenic, and scleral, so that it is characterized 
by a type index [a,–,–]. Such a pair of RS-diastereomers is referred to under the term 
‘pseudoasymmetry’ in the conventional terminology of stereochemistry. 
 
3.  GROSS ENUMERATION 

3.1. ACTION OF THE MAXIMUM POINT GROUP Oh 

The symmetry-itemized enumeration of octahedral complexes has been conducted by 
Fujita’s USCI approach [35]. Because the inverse mark table and the USCI-CF table of Oh 
has been reported in [36, 28], Def. 16.1 of [19] for gross enumeration can be applied to the 
gross enumeration of octahedral complexes. According to Section 2.6 of [28], the 
procedure of gross enumeration can be simplified by using a gross enumeration matrix 
(GEM), where the column sum N̂  of the inverse mark table is beforehand evaluated 
(Theorem 2.8 of [28]). Thus, the column sum N̂   for  Oh is calculated as follows: 

),0,0,0,0,0,0,0,0,0,0,0,0,0,0,
6
1,0,0,0

,0,0,0,0,0,0,
8
1,

8
1,

6
1,

48
1,

8
1,

16
1,

8
1,

16
1,

48
1(ˆ NT

                                         (6) 

which is cited from Table 3 of [36] or Table 2.4 of [28]. 
 The six positions of the octahedral skeleton construct an orbit governed by the coset 
representation Oh(/C4v), which is listed as products of cycles in the left parts (A and B) of 
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Figure 2. Hence, the Oh(/C4v)-row of the USCI-CF table of Oh (Tables 4 and 5 of [36] or 
Tables 2.5 and 2.6 of [28]) is adopted and aligned to form a formal row vector as follows: 
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 According to Corollary 1.3 of [37], the formal row vector )C(/O 4

CF-USCI
vh

 (Eq. 7) 

is multiplied by the column vector (Eq. 6), so as to give the corresponding CI-CF as 
follows: 
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                                      (8) 

 The CI-CF can be alternatively obtained according to Fujita’s proligand method [38, 
39,40], which has been introduced in a book (Chapter 7 of [28]). Let us start from the coset 
representation Oh(/C4v) listed as products of cycles in the left parts (A and B) of Figure 2. 
Each cycle is classified into one of three categories, i.e., homospheric, enantiospheric, and 
hemispheric cycles, where the concept of sphericities for cycles is introduced in a similar 
way to the concept of sphericities for orbits. Then, a product of sphericity indices (PSI) is 
calculated for characterizing each product of cycles, where a sphericity index ad is assigned 
to a homospheric d-cycle, a sphericity index cd is assigned to an enantiospheric d-cycle, and 
a sphericity index bd is assigned to a hemispheric d-cycle. 
 For example, the two-fold rotation C2(1) represented by a product of cycles (1)(2 
4)(3 5)(6) (Figure 2) is characterized by a PSI 2

2
2
1 bb , because each of the two 1-cycles is 

hemispheric and takes SI b1, while each of the two 2-cycles is hemispheric and takes SI b2. 
The reflection σh(3) represented by a product of cycles )6)(5)(3)(42)(1(  is characterized by a 

PSI 2
4
1 ca , because each of the four 1-cycles is homospheric and takes SI a1, while the one 

2-cycles is enantiospheric and takes SI c2. The resulting PSIs are listed in the rightmost 
column of each part of Figure 2. 
 According to Fujita’s proligand method [38, 39, 40], all of the PSIs for the point 
group Oh (the parts A and B of Figure 2) are summed up. The resulting sum is divided by 
the order of Oh (48), so as to give the following CI-CF (Def. 7.20 of [28]): 
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which is identical with Eq. 8. A general treatment of CI-CFs for maximum point groups has 
been reported (Eq. 27 of [30]). 
 To enumerate octahedral derivatives (promolecules), six proligands are selected 
from an inventory of proligands: 

},vv,,uu,,ss,,rr,,qq,,pp, Z;Y,X,C,B,{A,X                                        (10) 
where the letters A, B, C, X, Y, and Z represent achiral proligands and the pairs of p/ p , 
q/ q , r/ r , s/ s , u/ u , and v/ v  represent pairs of enantiomeric proligands in isolation (when 
detached). A set of six proligands selected from the ligand inventory X is placed on the six 
positions of an octahedral skeleton 1. 
 According to Theorem 1 of [38] (Theorem 7.21 of [28]), we use the following 
ligand-inventory functions: 

ad = Ad +Bd +Cd +Xd +Yd +Zd                                                  (11) 
 

222222222222 222222

BA
dddddddddddd

dddddd
d

vvuussrrqqpp

ZYXCc




                   (12) 
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YXb
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                             (13) 

 
 These ligand-inventory functions are introduced into an CI-CF represented by Eq. 9 
(or Eq. 8). The resulting equation is expanded to give a generating function, in which the 
coefficient of the term vvuussrrqqppzyxcba vvuussrrqqppZYXCBA indicates 
the number of pairs of enantiomeric promolecules (or achiral promolecules) to be counted. 
Note that the enumeration under the point group Oh (using Eq. 9) counts each enantiomeric 
pair (or each achiral promolecule) just once. 
 Because the proligands A, B, etc. appear symmetrically, the term can be represented 
by the following partition: 

   ],,,,,,,,,,,,;,,,,,[θ vvuussrrqqppzyxcba                                                 (14) 
 

where we put a ≥ b ≥ c ≥ x ≥ y ≥ z; p ≥ p , q ≥ q  , r ≥ r , s ≥ s , u ≥ u , v ≥ v ; and p ≥ q ≥ r ≥ 
s ≥ u ≥ v without losing generality. For example, the partitions: 
 

[]1=[6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]                                               (15) 
[θ]2 = [5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] , etc                                      (16) 
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correspond to the terms A6, B6 ...; A5B, A5C, ...; and so on. 
 
3.2. ACTION OF THE MAXIMUM CHIRAL SUBGROUP O 

Enumeration under the action of the maximum chiral subgroup is referred to as 
enumeration of promolecules as steric isomers in Chapter 7 of [28]. The enumeration of 
octahedral promolecules as steric isomers is conducted under the point group O, so that the 
CI-CF for is calculated by using the PSIs collected in the upperleft part of Figure 2 
according to Def. 7.23 of [28] as follows: 

).6683(
24
1CF(O)-CI 4

2
1

3
2

2
3

2
2

2
1

6
1 bbbbbbb                                                       (17) 

A general treatment of CI-CFs for maximum chiral subgroups has been reported (Eq. 17 of 
[29]). 
 The ligand-inventory function represented by Eq. 13 is introduced into Eq. 17. The 
resulting equation is expanded to give a generating function. Note that the enumeration 
under the maximum chiral point group O (using Eq. 17) counts each promolecule of an 
enantiomeric pair (or each achiral promolecule) just once. 
 
3.3 ACTION OF THE MAXIMUM RS-PERMUTATION GROUP l~O  

The point group Td and the symmetric group of degree 4 S[4] are compared by applying 
them to a tetrahedral skeleton [41], although the concept of RS-stereoisomeric groups was 
not developed at that time. Note that the symmetric group of degree 4 S[4] is regarded as an 
RS-permutation group ~T  from the viewpoint of Fujita’s stereoisogram approach [3, 1]. 
 Enumeration under the RS-permutation group l~O can be conducted in a parallel 

way. Thus, all of the PSIs for the RS-permutation group l~O  (the parts A and C of Figure 2) 

are summed up. The resulting sum is divided by the order of l~O (48), so as to give the 

following CI-CF: 
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                                                     (18) 

A general treatment of CI-CFs for maximum RS-permutation groups has been reported (Eq. 
41 of  [30]). 
 The ligand-inventory function represented by Eq. 13 is introduced into Eq. 18. The 
resulting equation is expanded to give a generating function. Note that the enumeration 
under the RS-permutation group l~O  (using Eq. 18) counts a pair of RS-diastereomers (or 

each RS-astereogenic promolecule) just once. 
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3.4. ACTION OF THE MAXIMUM LIGAND-REFLECTION GROUP ÎO  

To conduct enumeration under the maximum ligand-reflection group ÎO , all of the PSIs for 

ÎO  (the parts A and D of Figure 2) are summed up. The resulting sum is divided by the 

order of  ÎO  (48), so as to give the following CI-CF: 
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                                         (19) 

A general treatment of CI-CFs for maximum ligand-reflection groups has been reported 
(Eq. 54 of [30]). 
 The ligand inventory functions represented by Eqs. 11–13 are introduced into Eq. 
19. The resulting equation is expanded to give a generating function. Note that the 
enumeration under the maximum ligand-reflection group ÎO  , (using Eq. 19) counts a pair 

of holantimers (or each RS-ascleral promolecule) just once. 
 
3.5. ACTION OF THE RS-STEREOISOMERIC GROUP  IlhO ˆ~  

Because products of cycles appearing in the lower parts (B and D) of Figure 2 contain 
ligand reflections as designated by overbars, they are characterized by products of ad and/or 
cd after the concept of sphericities for cycles is extended to meet RS-stereoisomeric groups 
[30]. Thereby, Fujita’s proligand method [38, 39, 40] is extended to evaluate the number of 
quadruplets of RS-stereoisomeric promolecules. The following cycle index with chirality 
fittingness (CI-CF) is obtained: 
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                              (20) 

A general treatment of CI-CFs for RS-stereoisomeric groups has been reported (Eq. 11 of 
[30]). 
 The ligand inventory functions represented by Eqs. 11–13 are introduced into Eq. 
20. The resulting equation is expanded to give a generating function. Note that the 
enumeration under the RS-stereoisomeric group IlhO ˆ~   (using Eq. 20) counts a quadruplet 

of RS-stereoisomers (type I to type V) just once. 
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4. TYPE-ITEMIZED ENUMERATION 

4.1. FOUNDATIONS FOR CI-CFS OF FIVE TYPES 

Under the RS-stereoisomeric group IlhO ˆ~  , a quadruplet of RS-stereoisomers contained in a 

stereoisogram (type I to type V) is an equivalence class, which is counted just once by 
means of the CI-CF represented by Eq. 20. Let the symbol CI-CF[K]( IlhO ˆ~ ) (K = I, II, . . . 

V) be a CI-CF for counting each type. Then, their sum is equal to Eq. 20 as follows: 
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                      (21) 

 Under the maximum chiral subgroup O, each promolecule of an enantiomeric pair 
(or each achiral promolecule) is an equivalence class, which is counted just once by means 
of the CI-CF represented by Eq. 17. Figure 3 indicates that a type-I stereoisogram contains 
two promolecules, a type-II stereoisogram contains two promolecules, a type-III 
stereoisogram contains four promolecules, a type-IV stereoisogram contains one 
promolecule, and a type-V stereoisogram contains two promolecules. Hence, the CI-CF of 
Eq. 17 is represented as follows: 
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 Under the maximum point group Oh, each pair of (self-)enantiomers is an 
equivalence class, which is counted just once by means of the CI-CF represented by Eq. 9. 
Note that a pair of self-enantiomers means an achiral promolecule. Figure 3 indicates that a 
type-I stereoisogram contains one pair of enantiomers, a type-II stereoisogram contains one 
pair of enantiomers, a type-III stereoisogram contains two pairs of enantiomers, a type-IV 
stereoisogram contains one pair of self-enantiomers (one achiral promolecule), and a type-
V stereoisogram contains two pairs of self-enantiomers (two achiral promolecules). Hence, 
the CI-CF of Eq. 9 is represented as follows: 
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                 (23) 

Under the maximum RS-permutation group l~O , each pair of (self-)RS-diastereomers is an 

equivalence class, which is counted just once by means of the CI-CF represented by Eq. 18. 
Note that a pair of self-RS-diastereomers means an RS-astereogenic promolecule. Figure 3 
indicates that a type-I stereoisogram contains one pair of RS-diastereomers, a type-II 
stereoisogram contains two pairs of self-RS-diastereomers (two RS-astereogenic 
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promolecules), a type- III stereoisogram contains two pairs of RS-diastereomers, a type-IV 
stereoisogram contains one pair of self-RS-diastereomers (one RS-astereogenic 
promolecule), and a type-V stereoisogram contains one pair of RS-diastereomers. Hence, 
the CI-CF of Eq. 18 is represented as follows: 
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                        (24) 

 Under the maximum ligand-reflection group ÎO , each pair of (self-)holantimers is 

an equivalence class, which is counted just once by means of the CI-CF represented by Eq. 
19. Note that a pair of self-holantimers means an ascleral promolecule. Figure 3 indicates 
that a type-I stereoisogram contains two pairs of self-holantimers (two ascleral 
promolecules), a type-II stereoisogram contains one pair of holantimers, a type-III 
stereoisogram contains two pairs of holantimers, a type-IV stereoisogram contains one pair 
of self-holantimers (one ascleral promolecule), and a type-V stereoisogram contains one 
pair of holantimers. Hence, the CI-CF of Eq. 19 is represented as follows: 
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Although the five equations (Eqs. 21, 22, 23, 24, and 25) are obtained, they cannot be 
solved to give CI-CF[K]( Ilh ˆ~O ) (K = I, II, . . . V). 

For the purpose of obtaining )O(CF-CI ˆ~
[k]

Ilh  For the purpose of obtaining 

)O(CF-CI ˆ~
[k]

Ilh  (K = I, II, . . . V), the CI-CF of Eq. 23 is modulated according to Def. 1 of 

[32].) (K = I, II, . . . V), the CI-CF of Eq. 23 is modulated according to Def. 1 of [32]. 
 
CI-CF (Oh) = CI-CF(Oh)−CI-CF[V]( Ilh ˆ~O ) 

                       = CI-CF[I]( Ilh ˆ~O )+CI-CF[II]( 
Ilh ˆ~O )+2CI-CF[III] ( Ilh ˆ~O ) 

                       +CI-CF[IV] ( Ilh ˆ~O )+CI-CF[V]( Ilh ˆ~O ).                                                        (26) 

If the modulated CI-CF(Oh)  is evaluated, Eqs. 21, 22, 24, and 25 in addition to Eq. 26 can 
be solved to give CI-CF[K] ( Ilh ˆ~O ) (K = I, II, . . . V) as follows: 

CI-CF[I] ( Ilh ˆ~O ) = −CI-CF(Oh)+CI-CF( ÎO )                                                                   (27) 

CI-CF[II] ( Ilh ˆ~O ) = −CI-CF(Oh)+CI-CF( l~O )                                                                   (28) 

CI-CF[III] ( Ilh ˆ~O ) = CI-CF(Oh)−CI-CF( Ilh ˆ~O )                                                                 (29) 

CI-CF[IV] ( Ilh ˆ~O ) = −CI-CF(O)+2CI-CF(Oh)                                                                   (30) 
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CI-CF[V] ( Ilh ˆ~O ) = CI-CF(O)−CI-CF(Oh)−CI-CF( l~O ) 

                           − CI-CF( ÎO )+2CI-CF( Ilh ˆ~O )                                                               (31) 

Note that the introduction of CI-CF(Oh) (Eq. 26) into Eq. 31 generates the following 
equation: 
 
CI-CF(O) = CI-CF(Oh)+CI-CF( l~O )+CI-CF( ÎO )−2CI-CF( Ilh ˆ~O ) ,                                (32) 

 
which is an identical equation. 
 
4.2. EVALUATION OF THE MODULATED CI-CF 

The next task is the evaluation of the modulated CI-CF shown in Eq. 26. By starting from 
Eqs. 22 and 23 and by introducing Eqs. 9 and 17, we obtain the following CI-CF: 
 
CI-CF[IV] ( Ilh ˆ~O )+2CI-CF[V] ( Ilh ˆ~O ) = 2CI-CF(Oh)−CI-CF(O) 

                                                            = ),6683(
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2 cccaccac                (33) 

which indicates that achiral promolecules (type IV plus 2× type V) are counted under the 
point group Oh. For the purpose of evaluating CI-CF[V] ( Ilh ˆ~O ), let us examine whether or 

not each term appearing in the right-hand side of Eq. 33 contributes the formation of type-V 
promolecules. 
 The term 3

2c  (a PSI) in Eq. 33 is concerned with the generation of such a type-V 
promolecule as having the composition rrqqpp , which is depicted in Figure 4. The 
generating function which is generated by introducing the ligand-inventory function of Eq. 
12 into the PSI 3

2c  is contaminated with terms of type-IV promolecules, which stem from 

the PSIs such as 66422442422
2
2

2
22 ,,,,,,, acaacacacccaca  and 3

2c , because each c2 in the PSI 
3
2c  behaves independently. 

 The influences of such contaminated PSIs are excluded by trial-and-error 
examination of inclusion-exclusion behaviors, so as to leave such necessary terms as 

rrqqpp . The source code based on the GAP system is attached as an appendix, where a 
simplified examination is executed by using the ligand-inventory functions with A, B, C, X, 
p/ p , q/ q , and r/ r . Thereby, the following equation is obtained as a net contribution of 3

2c  
to type V: 

V1 := ,))(8)(6)(3(
48
1 3

266422442422
2
2

2
22

3
2 aacaacacacccacac         (34) 
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Figure 4. Type-V stereoisogram of a promolecule with the composition rrqqpp , which is 

evaluated by the PSI 3
2c . 

 

 
. 
Figure 5. Type-V stereoisograms of promolecules with the composition ABCXp p , which 
are evaluated by the PSI 2

4
1 ca . 

 
which leaves such necessary terms as rrqqpp . The term 2

4
13 ca  in Eq. 33 is concerned with 

the generation of such type-V promolecules as having the composition A2BCp p  (9 and 10 
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in Figure 3). In addition, the term 2
4
13 ca  corresponds to a type-V promolecules with the 

composition ABCXp p , as depicted in Figure 5. 
 By the examination using the attached source code, the following equation is 
obtained as a net contribution of 2

4
1 ca  to type V: 
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which leaves such necessary terms as A2BCp p  (cf. Figure 3) and ABCXp p  (cf. Figure 5). 
Note that the last line of Eq. 35 is added to omit such terms as A3Bp p , which are shifted to 

contribute to the term 6 2
2

2
1 ca . As for octahedral stereoisomers with A2BCp p , Figure 13 of 

[42].

 
 
Figure 6. Type-V stereoisograms of promolecules with the compositions A3Bp p p and 

AB qqpp , which are evaluated by the PSI  2
2

2
1 ca . 

 
 The term 6 2

2
2
1 ca  in Eq. 33 is concerned with the generation of such type-V 

promolecules as having the composition A3Bp p  (the first stereoisogram in Figure 6) and 
AB qqpp  (the second and third stereoisograms in Figure 6) 
 By the examination using the attached source code, the following equation is 
obtained as a net contribution of 2

2
2
1 ca to type V: 
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which leaves such necessary terms as A3Bp p  and AB qqpp  (Figure 6). Note that the last 
line of Eq. 36 is added to take account of such terms as A3Bp p . The last line of Eq. 36 is 
cancelled be the last line of Eq. 35, when Eq. 35 and Eq. 36 are summed up. 
 Among the terms appearing in the right-hand side of Eq. 33, the terms 8c6 and 6c2c4 
do not contribute to the appearance of type-V stereoisograms. Hence, Eqs. 34, 35, and 36 
are summed up to give the CI-CF for enumerating type-V stereoisograms: 
 
 CI-CF[V]( Ilh ˆ~O ) = V1+V2+V3 
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 By introducing Eq. 37 into Eq. 33, the CI-CF for enumerating type-IV 
stereoisograms is obtained as follows: 
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The modulated CI-CF is obtained by introducing Eq. 23 and Eq. 37 into Eq. 26: 
 
CI-CF (Oh) = CI-CF(Oh)−CI-CF[V]( Ilh ˆ~O ) 
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4.3. CI-CFS FOR ENUMERATING FIVE TYPES 

Because the modulated CI-CF (Eq. 39 for CI-CF(Oh)) has been obtained to revise the 
effect of CI-CF(Oh) (Eq. 9), it is used with the other CI-CFs, i.e., Eq. 17 for CI-CF(O), Eq. 
18 for CI-CF( l~O ), Eq. 19 for CI-CF( ÎO ), and Eq. 20 for CI-CF( Ilh ˆ~O ). They are 

introduced into Eqs. 27–31. Thereby, we reach the following CI-CFs for enumerating 
stereoisograms of five types: 
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The consistency of the modulated CI-CF (Eq. 39) is confirmed by the fact that Eq. 43 is 
identical with Eq. 38 and that Eq. 44 is identical with Eq. 37. 
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 In order to conduct type-itemized enumeration of octahedral complexes, the ligand-
inventory functions represented by Eqs. 11–13 are introduced into the type-itemized CI-
CFs represented by Eqs. 40–44. The resulting equation of each type is expanded to give a 
generating function. In a similar way to the attached source code based on the GAP system, 
the full forms of Eqs. 11–13 are used in the type-itemized enumeration of this article. The 
number of inequivalent quadruplets of RS-stereoisomers (i.e., inequivalent stereoisograms) 
appears in the generating function as the coefficient of the term 
AaBbCcXxYyZzppppqqqqrr rr ss Ss uu uu vv vv , which is represented by the partition [θ] (Eq. 
14). 
 
Table 1. Type-Itemized Enumeration of Octahedral Complexes with Achiral Proligands. 
 
 
    partition for the composition 

 
gross 
Oh 

 
enum. 

Ilh ˆ~O  

 
type-itemized enum. 

AaBbCcXxYyZzppppqqqqrr rr ss Ss uu uu vv vv   
I 

 
II 

 
III 

 
IV 

 
V 

[θ]1=[6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 1 1 0 0 0 1 0 
[θ]2=[5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 1 1 0 0 0 1 0 
[θ]3=[4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 2 2 0 0 0 2 0 
[θ]4=[4,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 2 2 0 0 0 2 0 
[θ]5=[3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 2 2 0 0 0 2 0 
[θ]6=[3,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 3 3 0 0 0 3 0 
[θ]7=[3,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 4 4 1 0 0 3 0 
[θ]8=[2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 5 5 1 0 0 4 0 
[θ]9=[2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 6 6 2 0 0 4 0 
[θ]10=[2,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0] 9 9 6 0 0 3 0 
[θ]11=[1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0] 15 15 15 0 0 0 0 
 
 
 
5. ENUMERATION RESULTS 

5.1. OCTAHEDRAL COMPLEXES WITH ACHIRAL PROLIGANDS ONLY 

Table 1 collects type-itemized enumeration of octahedral complexes with achiral proligands 
only. The columns of gross enumeration indicate the numbers of octahedral complexes 
counted under the point group Oh and under the RS-stereoisomeric group Ilh ˆ~O . Note that a 

pair of (self)-enantiomers is counted once under the point group Oh, while a quadruplet of 
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RS-stereoisomers is counted once under the RS-stereoisomeric group Ilh ˆ~O . The columns of 

type-itemized enumeration (type I to type V) indicate the numbers of octahedral complexes 
of five types. The values of the gross enumeration under the point group Oh satisfy Eq. 23. 
The values of the gross enumeration under the RS-stereoisomeric group Ilh ˆ~O satisfy Eq. 21. 

 Because Table 1 is concerned with achiral proligands only, there appear type-I or 
type-IV quadruplets. For example, the [θ]7-row of Table 1 indicates the presence of one 
type-I quadruplet and three type-IV quadruplets.  
 One type-I quadruplet with the composition A3BCX ([θ]7) has been depicted in the 
type-I frame of Figure 3, which contains a pair of enantiomers 3/ 3 . Note that a type-I 
quadruplet is generally characterized by the presence of diagonal equality symbols, so that 
it is chiral, RS-stereogenic, and ascleral (type index [−,−,a]). 
 The configuration of 3 (or 3 ) is specified by a configuration index OC-6-43 
according tothe IUPAC rule IR-9.3.3.4 [43], where the priority sequence A > B > C > X is 
presumed. According to the IUPAC rule IR-9.3.4.8 [43], the absolute configuration of 3 is 
specified to be OC-6-23-A, while that of its RS-diastereomer 4 (= 3 ) is specified to be OC-
6-43-C. Note that a pair of C/A-descriptors is assigned to a pair of RS-diastereomers (not to 
a pair of enantiomers) [33], strictly speaking, although a pair of RS-diastereomers is 
coincident with a pair of enantiomers in case of type-I stereoisograms. 
 Among the three type-IV quadruplets with the composition A3BCX ([θ]7), one 
quadruplet has been depicted in the type-IV frame of Figure 3, which contains an achiral 
octahedral complex 8 having a trans-pair of proligands A–X. The remaining two type-IV 
quadruplets can be drawn by replacing the proligand X located at the trans-position of A by 
the proligand B or C so as to generate a trans-pair A–B or A–C. Note that a type-IV 
quadruplet is generally characterized by the presence of equality symbols in all directions, 
so that it is achiral, RS-astereogenic, and ascleral (type index [a,a,a]). 
 The three type-IV quadruplets are differentiated by configuration indices according 
to the IUPAC rule IR-9.3.3.4 [43]. The configuration index of 8 is determined to be OC-6-
41, while the other two quadruplets are determined to be OC-6-21 and OC-6-31, 
respectively. 
 

5.2. OCTAHEDRAL COMPLEXES WITH ACHIRAL AND CHIRAL PROLIGANDS 

Table 2 collects type-itemized numbers of inequivalent quadruplets of RS-stereoisomers 
with achiral and chiral proligands. Each quadruplet of chiral promolecules is counted as a 
fractional value, as designated by an asterisk. For example, the value 1/2 at the intersection 
between the [θ]12-row (with an asterisk) and the type-II-column in Table 2 corresponds to 

such a term as 1× 
2
1  (A5p+ A5 p ), which indicates the presence of one type-II quadruplet 
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of RS-stereoisomers. Note that the composition A5p is converted into the composition 
A5 p vice versa under the action of a reflection. A type-II quadruplet is generally 
characterized by the presence of horizontal equality symbols, so that it is chiral, RS-
astereogenic, and scleral (type index [−,a,−]). 
 The value 1 at the intersection between the [θ]13-row (with an asterisk) and the type-
II column in Table 2 should be interpreted to correspond to such a term as 2×1/2 (A4p2 
+A4 p 2), which indicates the presence of two type-II quadruplets of RS-stereoisomers. Note 
that the composition A4p2 is converted into the composition A4 p 2 vice versa under the 
action of a reflection. These type-II quadruplets are depicted in Figure 7. Each type-II 
quadruplet in Figure 7 contains a pair of enantiomers 25/ 52  or 26/ 62 . 
 According to the IUPAC rule IR-9.3.3.4 [43], a configuration index OC-6-11 is 
assigned to 25 and 52 , where the priority sequence A > p or A > p  is presumed. In a 

similar way, a configuration index OC-6-22 is assigned to 26 and 26 . The absolute 
configuration for each pair of such enantiomers as belonging to type II is not specified by 
C/A-descriptors due to IUPAC rule IR-9.3.4.8, because of RS-astereogenicity (not because 
of achirality). For detailed discussions, see [33]. 
 On the other hand, the value 2 at the intersection between the [θ]15-row (without an 
asterisk) and the type-IV-column in Table 2 should be interpreted to correspond to such a 
term as 2× A4p p , which indicates the presence of two type-IV quadruplets of RS-
stereoisomers. Note that the composition A4p p  remains unchanged under the action of a 
reflection. These type-IV quadruplets are depicted in Figure 8. 
 The configurations of 27 and 28 can be differentiated by configuration indices 
according to the IUPAC rule IR-9.3.3.4 [43]. Thus, a configuration index OC-6-11 is 
assigned to 27, while a configuration index OC-6-32 is assigned to 28, where the priority 
sequence A > p > p  is presumed. 
 The value 1 at the intersection between the [θ]19-row (without an asterisk) and the 
type-V column in Table 2 indicates the presence of one type-V quadruplet of RS-
stereoisomers, which has the composition A3Bp p . The type-V quadruplet containing 19 
and 20 has been drawn in Figure 6. According to the IUPAC rules IR-9.3.3.4 and IR-9.3.4.8 
[43], 19 is determined to be OC-6-43-a, while 20 is determined to be OC-6-43-c, where the 
priority sequence A > B > p> p  is presumed. Note that a pair of C/A-descriptors is 
assigned to a pair of RS-diastereomers 19/20, which is contained in a type-V stereoisogram 
shown in Figure 6. The chirality-unfaithful feature [11] is emphasized by the lowercase 
labels ‘c/a’ used in place of the uppercase labels ‘C/A’ [33]. 
 The value 2 at the intersection between the [θ]29-row (with an asterisk) and the type-
II column in Table 2 should be interpreted to correspond to such a term as 4 ×1/2 (A2BCp2 
+ A2BC p 2), which indicates the presence of four type-II quadruplets of RS-stereoisomers. 
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One type-II quadruplet containing 5/ 5  is drawn in Figure 3. The remaining three type-II 
quadruplets containing 29/ 29 , 30/30 , and 31/ 31 are depicted in Figure 9. 
 According to the IUPAC rule IR-9.3.3.4 [43], a configuration index OC-6-32 is 
assignedto 5 and 5  , where the priority sequence A > B > C > p or A > B > C > p  is 

presumed. In a similar way, a configuration index OC-6-14 is assigned to 29 and 29 ; a 
configuration index OC-6-13 is assigned to 30 and 30 ; and a configuration index OC-6-44 
is assigned to 31 and 31. The absolute configuration for each pair of such enantiomers as 
belonging to type II is not specified by C/A-descriptors due to IUPAC rule IR-9.3.4.8, 
because of RS-astereogenicity (not because of achirality) [33]. 
 
Table 2. Type-Itemized Enumeration of Octahedral Complexes with Achiral and Chiral 
Proligands (Part 1). 
 
    partition for the composition gross 

 
Oh 

enum. 
 

Ilh ˆ~O  

type-itemized enum. 

AaBbCcXxYyZzppppqqqqrr rr ss Ss uu uu v vv   
I 

 
II 

 
III 

 
IV 

 
V 

*
12θ][ =[5,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] 1/2 1/2 0 1/2 0 0 0 
*
13θ][ =[4,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
14θ][ =[4,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
15θ][ =[4,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0] 2 2 0 0 0 2 0 
*
16θ][ =[3,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
17θ][ =[3,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
18θ][ =[3,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
19θ][ =[3,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
20θ][ =[3,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
21θ][ =[3,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
22θ][ =[3,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
23θ][ =[3,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
24θ][ =[3,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
25θ][ =[3,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
26θ][ =[2,2,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0] 3 5/2 0 2 1/2 0 0 
*
27θ][ =[2,2,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0] 6 5 0 0 1 4 0 
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*
28θ][ =[2,2,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
29θ][ =[2,1,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
30θ][ =[2,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0] 10 6 0 1 2 1 2 
*
31θ][ =[2,1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
32θ][ =[2,1,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
33θ][ =[2,1,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
34θ][ =[2,1,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
35θ][ =[2,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
36θ][ =[2,1,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
37θ][ =[2,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
38θ][ =[2,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
39θ][ =[2,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
40θ][ =[2,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0] 4 4 1 1 0 2 0 
*
41θ][ =[2,0,0,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0] 3 5/2 0 2 1/2 0 0 
*
42θ][ =[2,0,0,0,0,0,2,1,1,0,0,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
43θ][ =[2,0,0,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
44θ][ =[2,0,0,0,0,0,2,0,1,0,1,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
45θ][ =[2,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0] 9 7 2 0 2 3 0 
*
46θ][ =[2,0,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
47θ][ =[2,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 

 
 
 The value 1 at the intersection between The [θ]29-row (with an asterisk) and the 
type-III column in Table 2 should be interpreted to correspond to such a term as 2 ×1/2 
(A2BCp2 + A2BC p 2), which indicates the presence of two type-III quadruplets of RS-
stereoisomers. They are depicted in Figure 10. A type-III quadruplet is generally 
characterized by the absence of equality symbols in all directions, so that it is chiral, RS-
stereogenic, and scleral (type index [−,−,−]). 
 The [θ]30-row (without an asterisk) in Table 2 indicates the presence of one type-II, 
two type-III, one type-IV, and two type-V stereoisograms. 
 One type-II quadruplet of RS-stereoisomers 36/ 36  with the composition A2BCp p  is 
depicted in the upperleft part of Figure 11. According to the IUPAC rule IR-9.3.3.4 [43], a 
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configuration index OC-6-15 is assigned to 36, while OC-6-14 is assigned to 36, where the 
priority sequence A > B > C > p > p  is presumed. The absolute configuration for each 
pair of such enantiomers as belonging to type II is not specified by C/A-descriptors due to 
IUPAC rule IR-9.3.4.8, because of RS-astereogenicity (not because of achirality) [33]. 
 Among the two type-III quadruplets with A2BCp p  ([θ]30), one has been already 

depicted in the type-III frame of Figure 3 (6/ 6 /7/ 7 ). The other is depicted in the upperright 
part of Figure 11 (37/ 37 /38/ 38 ). As for the type-III frame of Figure 3, OC-6-52-C 
assigned to 6 is paired with OC-6-52-A assigned to 7, while OC-6-42-A assigned to 6 is 
paired with OC-6-42-C assigned to 7. As for the upperright part of Figure 11, OC-6-53-C 
assigned to 37 is paired with OC- 6-53-A assigned to 38, while OC-6-43-A assigned to 37 is 
paired with OC-6-43-C assigned to 38 . It should be noted that OC-6-52-C assigned to 6 , 
for example, is not paired with OC-6-42-A assigned to 6 , because the configuration-index 
parts are different from each other, even though the C/A-labels are paired. It follows that a 
pair of C/A-descriptors is assigned to a pair of RS-diastereomers, not to a pair of 
enantiomers. 
 One type-IV quadruplet, which consists of an achiral promolecule 39 with the 
composition A2BCp p , is depicted in the lower left part of Figure 11. 
 Among the two type-V quadruplets with the composition A2BCp p , one has been 
depicted in the type-V frame of Figure 3 (9/10). The other is depicted in the lowerright part 
of Figure 11 (40/41). The pair of 9/10 (or the pair of 40/41) is in an RS-diastereomeric 
relationship, which is specified by C/A-descriptors due to IUPAC rule IR-9.3.4.8. When the 
priority sequence A > B > C > p > p  is presumed, OC-6-32-a assigned to 9 is paired with 
OC-6-32-c assigned to 10; and OC-6-54-a assigned to 40 is paired with OC-6-54-c 
assigned to 41. The lowercase labels c/a are used to emphasize the chirality-unfaithful 
features of type-V quadruplets. 
 Table 3 is the list of additional type-itemized numbers of inequivalent quadruplets 
of RS-stereoisomers with achiral and chiral proligands. 
 The [θ]49-row (without an asterisk) in Table 3 indicates the presence of six type-III 
and three type-V stereoisograms. The three type-V quadruplets with the composition 
ABCXp p  have been already depicted in Figure 5, where each type-V quadruplet is 
characterized to be achiral, RS-stereogenic, and scleral (type index [a,–,–]). The pair of 
13/14 (or 15/16 or 17/18) exhibits an RS-diastereomeric relationship, which corresponds to 
the term ‘pseudoasymmetry’ in the conventional terminology of stereochemistry. When the 
priority sequence A > B > C > X > p > p is presumed, OC-6-43-a assigned to 13 is paired 
with OC-6-43-c assigned to 14; OC-6-24-c assigned to 15 is paired with OC-6-24-a 
assigned to 16; and OC-6-34-a assigned to 17 is paired with OC-6-34-c assigned to 18. 
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Figure 7. Type-II stereoisograms of promolecules with the composition 1/2 (A4p2+A4 p 2), 
which corresponds to the [θ]13-row of Table 2. 
 
 The [θ]62-row (without an asterisk) in Table 3 indicates the presence of one type-I, 
six type-III, and two type-V stereoisograms. The two type-V quadruplets with the 
composition qqpABp  ([θ]62) have been already depicted in Figure 6, where each type-V 
quadruplet is characterized to be achiral, RS-stereogenic, and scleral (type index [a,−,−]). 
The pair of 21/22 (or 23/24) exhibits an RS-diastereomeric relationship, which corresponds 
to the term ‘pseudoasymmetry’ in the conventional terminology of stereochemistry. When 
the priority sequence A > B > p > p  > q > q  is presumed, OC-6-26-a assigned to 21 is 
paired with OC-6-26-c assigned to 22; and OC-6-25-a assigned to 23 is paired with OC-6-
25-c assigned to 24. 
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Figure 8. Type-IV stereoisograms of promolecules with the composition A4p p , which 
corresponds to the [θ]15-row of Table 2. 
 

 
 
Figure 9. Type-II stereoisograms of promolecules with the composition 
1/2(A2BCp2+A2BC p 2), which corresponds to the [θ]29-row of Table 2. One more type-II 
stereoisogram (5/ 5 ) is drawn in Figure 3. 
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Figure 10. Type-III stereoisograms of promolecules with the composition 1/2 (A2BCp2 + 
A2BC p 2), which corresponds to the [θ]29-row of Table 2. 
 
 The type-I quadruplet with the composition ABp p q q  ([θ]62) is depicted in Figure 
12. The chiral, RS-stereogenic, and ascleral behavior of Figure 12 (type index [−,−,a]) is 
characterized by the presence of equality symbols in the diagonal directions, so that the RS-
diastereomeric relationship between 42 and 43 (= 42 ) is coincident with the enantiomeric 
relationship between 42 and 42 . When the priority sequence A > B > p > p  > q > p  is 
presumed, OC-6-24- A assigned to 42 is paired with OC-6-24-C assigned to 43. The pair of 
the labels assigned originally to a pair of RS-diastereomers 42/43 can be interpreted to be 
assigned to a pair of enantiomers 42/ 42  (= 43) in a chirality-faithful fashion [11]. 
 
5.3. OCTAHEDRAL COMPLEXES WITH CHIRAL PROLIGANDS ONLY 

Table 4 collects type-itemized numbers of inequivalent quadruplets of RS-stereoisomers 
with chiral proligands only. 
 The value of 1 at the intersection between the [θ]111-row and the type-V-column in 
Table 4 indicates the presence of one type-V stereoisogram with the composition p p q q r r . 
The type-V stereoisogram has been depicted in Figure 4, in which a pair of 11 and 12 is 
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determined to be RS-diastereomeric. When the priority sequence p > p > q > q  > r > r  is 
presumed, OC-6-24-a assigned to 11 is paired with OC-6-24-c assigned to 12. 
 

 
 
Figure 11. Several stereoisograms of promolecules with the composition A2BCp p , which 
corresponds to the [θ]30-row of Table 2. 
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6.  CONCLUSION 

Fujita’s proligand method [28] is extended to treat type-itemized enumeration of 
quadruplets of octahedral complexes under the action of the corresponding RS-
stereoisomeric group. A modulated CI-CF is evaluated from the CI-CF of the point group 
Oh by trial-and error calculation of type-V quadruplets contained in stereoisograms. Then, 
the modulated CI-CF is combined with a CI-CF of the maximum chiral point group (O), a 
CI-CF of the maximum RS-permutation group, a CI-CF of the maximum ligand-reflection 
group, and a CI-CF of the RS-stereoisomeric group so as to generate CI-CFs for evaluating 
type-I to type-V quadruplets. By introducing ligand-inventory functions into the CI-CFs, 
the numbers of quadruplets of octahedral complexes are obtained and shown in tabular 
forms. Several stereoisograms for typical complexes are depicted. Their configuration 
indices due to IUPAC rule IR-9.3.3.4 [43] as well as C/A descriptors due to IUPAC rule IR-
9.3.4.8 are discussed on the basis of Fujita’s stereoisogram approach [34]. 
 

 
Figure 12. Type-I stereoisogram of promolecules with the composition ABp p q q , which 
corresponds to the [θ]62-row of Table 3. 
 
APPENDIX 

The following source code for evaluation of the modulated CI-CF is based on the GAP 
system [44]. The file named test_V.gap containing this code is stored in a directory shown 
in the command Read. This Read sentence is copied and pasted on a command line of the 
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GAP system. The execution result is stored in the log file named test_Vlog.txt, which is 
specified by the command LogTo. The type-itemized enumeration can be done by using the 
CI-CFs of the respective types (Eqs. 40–44) in place of V_1 etc. 
 
#Read("c:/fujita0/fujita2015/ligancy6/calcGAP/test_V.gap"); 
LogTo("c:/fujita0/fujita2015/ligancy6/calcGAP/test_Vlog.txt"); 
##################### 
# Setting variables # 
##################### 
A := Indeterminate(Rationals, "A"); B := Indeterminate(Rationals, "B"); 
C := Indeterminate(Rationals, "C"); x := Indeterminate(Rationals, "x"); 
y := Indeterminate(Rationals, "y"); z := Indeterminate(Rationals, "z"); 
p := Indeterminate(Rationals, "p"); P := Indeterminate(Rationals, "P"); 
q := Indeterminate(Rationals, "q"); Q := Indeterminate(Rationals, "Q"); 
r := Indeterminate(Rationals, "r"); R := Indeterminate(Rationals, "R"); 
s := Indeterminate(Rationals, "s"); S := Indeterminate(Rationals, "S"); 
u := Indeterminate(Rationals, "u"); U := Indeterminate(Rationals, "U"); 
v := Indeterminate(Rationals, "v"); V := Indeterminate(Rationals, "V"); 
b_1 := Indeterminate(Rationals, "b_1"); b_2 := Indeterminate(Rationals, "b_2"); 
b_3 := Indeterminate(Rationals, "b_3"); b_4 := Indeterminate(Rationals, "b_4"); 
b_5 := Indeterminate(Rationals, "b_5"); b_6 := Indeterminate(Rationals, "b_6"); 
a_1 := Indeterminate(Rationals, "a_1"); a_2 := Indeterminate(Rationals, "a_2"); 
a_3 := Indeterminate(Rationals, "a_3"); a_4 := Indeterminate(Rationals, "a_4"); 
a_5 := Indeterminate(Rationals, "a_5"); a_6 := Indeterminate(Rationals, "a_6"); 
c_2 := Indeterminate(Rationals, "c_2"); c_4 := Indeterminate(Rationals, "c_4"); 
c_6 := Indeterminate(Rationals, "c_6"); 
#################### 
#type IV + 2 type V# 
#################### 
CICF_VI_V := (1/24)*(c_2ˆ3 + 3*a_1ˆ4*c_2 + 8*c_6 + 6*a_1ˆ2*c_2ˆ2 + 6*c_2*c_4); 
############################## 
#Evaluation of the term c_2ˆ3# 
############################## 
V1 := (1/48)*(c_2ˆ3 - 3*(a_2*c_2ˆ2 - a_2ˆ2*c_2) - 6*(c_2*c_4 - a_2*c_4 - a_4*c_2 
+ a_2*a_4) + 8*(c_6 - a_6) - a_2ˆ3); 
################################## 
#Evaluation of the term a_1ˆ4*c_2# 
################################## 
V2 := (1/48)*(3*(a_1ˆ4*c_2 - a_1ˆ4*a_2 + 2*(a_4*c_2 - a_2*a_4) 
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+ 2*(a_1ˆ2*a_2*c_2 - a_1ˆ2*a_2ˆ2) - 5*(a_2ˆ2*c_2 - a_2ˆ3) 
- 8*(a_1*a_3*c_2-a_1*a_3*a_2) + 8*(a_4*c_2 - a_2*a_4))); 
#################################### 
#Evaluation of the term a_1ˆ2*c_2ˆ2# 
#################################### 
V3 := (1/48)*(6*(a_1ˆ2*c_2ˆ2 - 2*(a_1ˆ2*c_4 - a_1ˆ2*a_4) - 2*a_1ˆ2*a_2*c_2 
+ a_1ˆ2*a_2ˆ2 - (a_2*c_2ˆ2 - a_2ˆ3) + 2*(a_2*c_4 - a_2*a_4) + 2*(a_2ˆ2*c_2 - a_2ˆ3) 
+ 4*(a_1*a_3*c_2-a_1*a_3*a_2) - 4*(a_4*c_2 - a_2*a_4))); 
################## 
# CI-CF of type V# 
################## 
CICF_V := V1 + V2 + V3; 
################### 
# CI-CF of type IV# 
################### 
CICF_IV := CICF_VI_V - 2*CICF_V; 
############################ 
#Ligand-inventory functions# 
############################ 
aa_1 := A + B + C + x; 
aa_2 := Aˆ2 + Bˆ2 + Cˆ2 + xˆ2; 
aa_3 := Aˆ3 + Bˆ3 + Cˆ3 + xˆ3; 
aa_4 := Aˆ4 + Bˆ4 + Cˆ4 + xˆ4; 
aa_6 := Aˆ6 + Bˆ6 + Cˆ6 + xˆ6; 
bb_3 := Aˆ3 + Bˆ3 + Cˆ3 + xˆ3 + pˆ3 + Pˆ3 + qˆ3 + Qˆ3 + rˆ3 + Rˆ3; 
bb_4 := Aˆ4 + Bˆ4 + Cˆ4 + xˆ4 + pˆ4 + Pˆ4 + qˆ4 + Qˆ4 + rˆ4 + Rˆ4; 
bb_6 := Aˆ6 + Bˆ6 + Cˆ6 + xˆ6 + pˆ6 + Pˆ6 + qˆ6 + Qˆ6 + rˆ6 + Rˆ6; 
cc_2 := Aˆ2 + Bˆ2 + Cˆ2 + xˆ2 + 2*p*P + 2*q*Q + 2*r*R; 
cc_4 := Aˆ4 + Bˆ4 + Cˆ4 + xˆ4 + 2*pˆ2*Pˆ2 + 2*qˆ2*Qˆ2 + 2*rˆ2*Rˆ2; 
cc_6 := Aˆ6 + Bˆ6 + Cˆ6 + xˆ6 + 2*pˆ3*Pˆ3 + 2*qˆ3*Qˆ3 + 2*rˆ3*Rˆ3; 
###################### 
#Generating functions# 
###################### 
Display("##### CICF_VI_V, f_CICF_VI_V --- type IV + 2 type V ######"); 
Print("CICF_VI_V := ", CICF_VI_V, "\n"); 
f_CICF_VI_V:= Value(CICF_VI_V, 
[a_1, a_2, a_3, a_4, a_6, b_1, b_2, b_3, b_4, b_6, c_2, c_4, c_6], 
[aa_1, aa_2, aa_3, aa_4, aa_6, bb_1, bb_2, bb_3, bb_4, bb_6, cc_2, cc_4, cc_6]); 
Print("f_CICF_VI_V := ", f_CICF_VI_V, "\n"); 
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Display("##### V1, f_V1 --- term c_2ˆ3 ######"); 
Print("V1 := ", V1, "\n"); 
f_V1:= Value(V1, 
[a_1, a_2, a_3, a_4, a_6, b_1, b_2, b_3, b_4, b_6, c_2, c_4, c_6], 
[aa_1, aa_2, aa_3, aa_4, aa_6, bb_1, bb_2, bb_3, bb_4, bb_6, cc_2, cc_4, cc_6]); 
Print("f_V1 := ", f_V1, "\n"); 
Display("##### V2, f_V2 --- term a_1ˆ4*c_2 ######"); 
Print("V2 := ", V2, "\n"); 
f_V2:= Value(V2, 
[a_1, a_2, a_3, a_4, a_6, b_1, b_2, b_3, b_4, b_6, c_2, c_4, c_6], 
[aa_1, aa_2, aa_3, aa_4, aa_6, bb_1, bb_2, bb_3, bb_4, bb_6, cc_2, cc_4, cc_6]); 
Print("f_V2 := ", f_V2, "\n"); 
Display("##### V3, f_V3 --- term a_1ˆ2*c_2ˆ2 ######"); 
Print("V3 := ", V3, "\n"); 
f_V3:= Value(V3, 
[a_1, a_2, a_3, a_4, a_6, b_1, b_2, b_3, b_4, b_6, c_2, c_4, c_6], 
[aa_1, aa_2, aa_3, aa_4, aa_6, bb_1, bb_2, bb_3, bb_4, bb_6, cc_2, cc_4, cc_6]); 
Print("f_V3 := ", f_V3, "\n"); 
Display("##### CICF_V, f_CICF_V --- type V ######"); 
Print("CICF_V := ", CICF_V, "\n"); 
f_CICF_V:= Value(CICF_V, 
[a_1, a_2, a_3, a_4, a_6, b_1, b_2, b_3, b_4, b_6, c_2, c_4, c_6], 
[aa_1, aa_2, aa_3, aa_4, aa_6, bb_1, bb_2, bb_3, bb_4, bb_6, cc_2, cc_4, cc_6]); 
Print("f_CICF_V := ", f_CICF_V, "\n"); 
Display("##### CICF_IV, f_CICF_IV --- type IV ######"); 
Print("CICF_IV := ", CICF_IV, "\n"); 
f_CICF_IV:= Value(CICF_IV, 
[a_1, a_2, a_3, a_4, a_6, b_1, b_2, b_3, b_4, b_6, c_2, c_4, c_6], 
[aa_1, aa_2, aa_3, aa_4, aa_6, bb_1, bb_2, bb_3, bb_4, bb_6, cc_2, cc_4, cc_6]); 
Print("f_CICF_IV := ", f_CICF_IV, "\n"); 
LogTo(); 
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Table 3. Type-Itemized Enumeration of Octahedral Complexes with Achiral and Chiral 
Proligands (Part 2). 
 
 
    partition for the composition 

 
gross 
Oh 

 
enum. 

Ilh ˆ~O  

 
type-itemized enum. 

AaBbCcXxYyZzppppqqqqrr rr ss Ss uu uu v vv   
I 

 
II 

 
III 

 
IV 

 
V 

*
48θ][ = [1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0] 15 15/2 0 0 15/2 0 0 
*
49θ][ = [1,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0] 18 9 0 0 6 0 3 
*
50θ][ = [1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0] 15 15/2 0 0 15/2 0 0 
*
51θ][ = [1,1,1,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
52θ][ = [1,1,1,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
53θ][ = [1,1,1,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
54θ][ = [1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0] 15 15/2 0 0 15/2 0 0 
*
55θ][ = [1,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
56θ][ = [1,1,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
57θ][ = [1,1,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
58θ][ = [1,1,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0] 5 4 0 1 1 2 0 
*
59θ][ = [1,1,0,0,0,0,2,1,1,0,0,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
60θ][ = [1,1,0,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
61θ][ = [1,1,0,0,0,0,2,0,1,0,1,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
62θ][ = [1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0] 17 9 1 0 6 0 2 
*
63θ][ = [1,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,0] 15 15/2 0 0 15/2 0 0 
*
64θ][ = [1,1,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0] 15 15/2 0 0 15/2 0 0 
*
65θ][ = [1,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0] 1/2 1/2 0 1/2 0 0 0 
*
66θ][ =[1,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
67θ][ =[1,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
68θ][ =[1,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
69θ][ =[1,0,0,0,0,0,3,0,2,0,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
70θ][ =[1,0,0,0,0,0,3,1,1,0,0,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
71θ][ =[1,0,0,0,0,0,3,0,1,1,0,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
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*
72θ][ =[1,0,0,0,0,0,3,0,1,0,1,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
73θ][ =[1,0,0,0,0,0,2,2,1,0,0,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
74θ][ = [1,0,0,0,0,0,2,1,2,0,0,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
75θ][ =[1,0,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
76θ][ =[1,0,0,0,0,0,2,1,1,0,1,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
77θ][ =[1,0,0,0,0,0,2,0,1,1,1,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
78θ][ =[1,0,0,0,0,0,2,0,1,0,1,0,1,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
79θ][ =[1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0] 15 15/2 0 0 15/2 0 0 
*
80θ][ =[1,0,0,0,0,0,1,1,1,0,1,0,1,0,0,0,0,0] 15 15/2 0 0 15/2 0 0 
*
81θ][ =[1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,0] 15 15/2 0 0 15/2 0 0 

 
Table 4. Type-Itemized Enumeration of Octahedral Complexes with Chiral Proligands. 
 
 
    partition for the composition 

 
gross 
Oh 

 
enum. 

Ilh ˆ~O  

 
type-itemized enum. 

AaBbCcXxYyZzppppqqqqrr rr ss Ss uu uu v vv   
I 

 
II 

 
III 

 
IV 

 
V 

*
82θ][ =[0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0] 1/2 1/2 0 1/2 0 0 0 
*
83θ][ =[0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,0,0] 1/2 1/2 0 1/2 0 0 0 
*
84θ][ =[0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0] 1/2 1/2 0 1/2 0 0 0 
*
85θ][ =[0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
86θ][ =[0,0,0,0,0,0,4,0,2,0,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
87θ][ =[0,0,0,0,0,0,4,1,1,0,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
88θ][ =[0,0,0,0,0,0,4,0,1,1,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
89θ][ =[0,0,0,0,0,0,4,0,1,0,1,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
90θ][ =[0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,0,0] 2 2 0 0 0 2 0 
*
91θ][ =[0,0,0,0,0,0,3,0,3,0,0,0,0,0,0,0,0,0] 1 1 0 1 0 0 0 
*
92θ][ =[0,0,0,0,0,0,3,2,1,0,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
93θ][ =[0,0,0,0,0,0,3,1,2,0,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
94θ][ =[0,0,0,0,0,0,3,1,1,1,0,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
95θ][ =[0,0,0,0,0,0,3,1,1,0,1,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
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*
96θ][ =[0,0,0,0,0,0,3,0,2,1,0,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
97θ][ =[0,0,0,0,0,0,3,0,2,0,1,0,0,0,0,0,0,0] 3/2 3/2 0 3/2 0 0 0 
*
98θ][ =[0,0,0,0,0,0,3,0,1,1,1,0,0,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
99θ][ =[0,0,0,0,0,0,3,0,1,0,1,0,1,0,0,0,0,0] 5/2 2 0 3/2 1/2 0 0 
*
100θ][ =[0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0] 3 5/2 0 2 1/2 0 0 
*
101θ][ =[0,0,0,0,0,0,2,2,1,1,0,0,0,0,0,0,0,0] 5 5 2 1 0 2 0 
*
102θ][ =[0,0,0,0,0,0,2,2,1,0,1,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
103θ][ =[0,0,0,0,0,0,2,1,2,1,0,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
104θ][ =[0,0,0,0,0,0,2,1,2,0,1,0,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
105θ][ =[0,0,0,0,0,0,2,1,1,1,1,0,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
106θ][ =[0,0,0,0,0,0,2,1,1,0,1,0,1,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
107θ][ =[0,0,0,0,0,0,2,0,2,0,2,0,0,0,0,0,0,0] 3 5/2 0 2 1/2 0 0 
*
108θ][ =[0,0,0,0,0,0,2,0,2,0,1,1,0,0,0,0,0,0] 4 3 0 2 1 0 0 
*
109θ][ =[0,0,0,0,0,0,2,0,1,1,1,1,0,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
110θ][ =[0,0,0,0,0,0,2,0,1,1,1,0,1,0,0,0,0,0] 15/2 9/2 0 3/2 3 0 0 
*
111θ][ =[0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0] 16 11 6 0 4 0 1 
*
112θ][ =[0,0,0,0,0,0,1,1,1,1,1,0,1,0,0,0,0,0] 15 15/2 0 0 15/2 0 0 
*
113θ][ =[0,0,0,0,0,0,1,1,1,0,1,0,1,0,1,0,0,0] 15 15/2 0 0 15/2 0 0 
*
114θ][ =[0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0] 15 15/2 0 0 15/2 0 0 
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