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ABSTRACT Let G be a molecular graph with vertex set V(G) and dG(u,v) be the topological 
distance between vertices u and v in G. The Hosoya polynomial H(G,x) of G is a polynomial 
  )(},{

),(
GVvu

vuGdx  in variable x. In this paper, we obtain an explicit analytical expression 
for the expected value of the Hosoya polynomial of a random benzenoid chain with n 
hexagons. Furthermore, as corollaries, the expected values of the well-known topological 
indices: Wiener index, hyper-Wiener index and TratchStankevitchZefirov index of a 
random benzenoid chain with  n hexagons can be obtained by simple mathematical 
calculations, which generates the results given by I. Gutman et al. [Wiener numbers of random 
benzenoid chains, Chem. Phys. Lett. 173 (1990) 403408]. 
 
KEYWORDS Wiener index • random benzenoid chain • Hosoya polynomial • expected value 
• generating function. 

 

1. INTRODUCTION 

A molecular graph ( or chemical graph) is a representation of the structural formula of a 
chemical compound in terms of graph theory. Specifically, a molecular graph is a simple 
graph whose vertices correspond to the atoms of the compound and edges correspond to 
chemical bonds. Note that hydrogen atoms are often omitted. For example, benzenoid 
chains are molecular graphs of unbranched catacondensed benzenoid hydrocarbons. 
Molecular structure descriptors (or topological indices) of molecular graphs are graph 
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invariants and are used for Quantitative Structure-Activity Relationship (QSAR) and 
Quantitative Structure-Property Relationship (QSPR) studies, which mainly focus on 
structure-dependent chemical behaviours of molecules [4, 18]. 

Let G  be a molecular graph with vertex set V(G), dG(u,v) be the topological distance 
(or distance for short) between vertices u  and v  in G , i.e., the length of a shortest path 
connecting u and v  in G. The subscript is omitted when there is no risk of confusion. The 
Hosoya polynomial} in variable x of G , introduced by Hosoya [12], is defined as 

,),( )(},{
),(  GVvu

vuGdxxGH where the sum is taken over all unordered pairs of (not 

necessarily distinct) vertices in G . Hence the polynomial contains the number of vertices 
as the constant term. 
 The Hosoya polynomial not only contains more information concerning distance in 
the molecular graph than any of the hither to proposed distance-based molecular structure 
descriptors, which were extensively studied in chemical graph theory, see for instance the 
surveys [16, 17], but also deduces some of them. For example, Wiener index ( )W G  of a 
molecular graph G  [20], the oldest and most well-studied molecular structure descriptor so 
far, is equal to the first derivative of the Hosoya polynomial in 1x  , i.e., 

.),()( 1 x
x

xGH
d
dGW                                             (1) 

 The chemical applications and mathematical properties of ( )W G  are well 
documented [5, 6, 9, 10]. Moreover, hyper-Wiener index ( )WW G [14], 
TratchStankevitchZefirov index ( )TSZ G  [19] can be deduced from ( , )H G x  as follows: 
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 Two classes of general molecular structure descriptors 
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for positive integers k were also studied in Refs. [2, 15]. On the other hand, recently 
Brückler etc. [2] proposed a new class of distance-based molecular structure descriptors: Q-
indices, which can reflect the fact that any kind of interaction between physical objects (in 
particular, between atoms in a molecule) decrease with increasing distance, and showed 
that Q-indices are equal to the Hosoya polynomial.  So the Hosoya polynomial and the 
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quantities derived from it will play a significant role in QSAR and QSPR researches, and 
abundant literature appeared on this topic [3, 8,21, 22, 23]. 

Let Bn+1  denote a benzenoid chain with n+1  hexagons ( 0n  ). There are obviously 
unique benzenoid chains Bn+1 for  0,1n  . More generally, a benzenoid chain 1nB   can be 

regarded as a benzenoid chain nB  to which a new terminal hexagon un, y1, y2, y3, y4, vn  has 
been adjoined. However, when 2n  ,  the terminal hexagon can be attached in three ways, 
resulting in the local arrangements we describe as 1

1nB  ,  2
1nB  , 3

1nB  , according to the related 
position of the terminal hexagon shown in Figure 1.  
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Figure 1. The three types of local arrangements in benzenoid chains 1nB   

 A random benzenoid chain, 1nR   with 1n   hexagons, is a benzenoid chain obtained 

by stepwise additions of terminal hexagons. As the initial steps, 1 1R B , 2 2R B , and for 
each step k  ( 2 k n  ) a random selection is made from one of the three possible 
constructions: 

1
1 kk BB , with probability  p1, 

2
1 kk BB , with probability p2 or 

3
1 kk BB , with probability  q=1- p1- p2. 

 We assume the probabilities p1 and  p2 are constants, invariant to the step parameter 
k. That is, the process described is a Markov chain of order zero with a state space 
consisting of three states [7]. 
 In the present paper, we calculate the expected value of the Hosoya polynomial of a 
random benzenoid chain nR  and give an explicit analytical expression by using the 
mathematical method: generating function. As corollaries, formulae for the expected values 
of some topological indices deduced from the expression can be obtained by using simple 
mathematical operators. 
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2. RECURSION RELATIONS OF HOSOYA POLYNOMIALS OF RANDOM  
            BENZENOID CHAINS 
 
Let G  be a connected graph with vertex set ( )V G . For the simplicity, we define one 
notation as follows: for a vertex uV(G), 
 

,);(
)(

),( 


GVv
vud

G xxuH  

i.e., the contribution of the vertexu  to the Hosoya polynomial H(G,x) of G . As described 
above in the previous section, a benzenoid chain Bn+1 is obtained by attaching to a 
benzenoid chain nB  a terminal hexagon consisting of vertices un, y1, y2, y3, y4, vn (see 
Figure 1).  For this construction the following relations are easily obtained  [10]: 
 

1);();( 23
11  xxxxuxHxyH nnBnB                                         (4a) 

,12);();( 22
21  xxxuHxxyH nnBnB                                           (4b) 

,12);();( 22
31  xxxvHxxyH nnBnB                                           (4c) 

,1);();( 23
41  xxxxvxHxyH nnBnB                                        (4d) 

and 

 



4

1

23
11 ).32();(),(),(

i
inBnn xxxxyHxBHxBH                      (5) 

 Note that the last term on the right-hand side of Eq. (5) appears because the 
contribution of pairs of vertices iy  and jy  (1 4i j   ) to H(Bn+1,x) are calculated twice 
in the second term on the right-hand side of Eq. (5). Substituting  Eq. (4) for Eq.(5), we get  
 

.432));();(()1(),(),( 23
1  xxxxvHxuHxxxBHxBH nBnBnn nn

     (6) 

 In fact, the equations discussed above associated with a concrete benzenoid chain 
are valid for a random benzenoid chain, i.e., Eqs. (4)-(6) still hold when we simultaneously 
replace Bn+1  for  Rn+1and  Bn for Rn. 

In the following we consider  contributions of 1nu   and 1nv   to H(Bn+1,x) according to 
the positions of un+1 and vn+1. There are three cases to consider: 

Case 1. Bn+1 1
2nB . In this case, un+1 = y1 and vn+1=y2=. Consequently, 

);();( 11 11
xyHxuH

nn BnB 
  and ,);();( 21 11

xyHxvH
nn BnB 

  which are given by Eqs. (4a) 

and (4b), respectively. 
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Case 2. Bn+1 2
2nB . In this case,  31 yun   and 41 yvn  . Consequently, 

);();( 31 11
xyHxuH

nn BnB 
  and ,);();( 41 11

xyHxvH
nn BnB 

 , which are given by Eqs. (4c) 

and (4d), respectively. 
Case 3. Bn+1 3

2nB . In this case, un+1=y2 and 31 yvn  . Consequently, 

,);();( 21 11
xyHxuH

nn BnB 
  and ,);();( 31 11

xyHxvH
nn BnB 

 , which are given by Eqs. (4b) 
and (4c), respectively. 

 
For a random benzenoid chain Rn+1, H(Rn+1,x), );( 11

xuH nRn 
 and );( 11

xvH nRn 
are 

random variables and we denote their expected values by )(,)( 11 xUxH nn    and )(1 xVn , 
respectively, i.e., 
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Since the above three cases occur in random benzenoid chains with probabilities p1, p2 
and 1p1p2, respectively, by the definition of the expected value we immediately obtain 

 

),;();();()( 232111 111
xyqHxyHpxyHpxU

nnn RRRn 
                       (7a) 

  ),;();(;)( 342211 111
xyqHxyHpxyHpxV

nnn RRRn 
                      (7b) 

Substituting the corresponding analogues associated with random benzenoid chains  Rn 
and  Rn+1 to Eq. (4) for Eq. (7), we get 
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        (8a) 
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         (8b) 
 

By applying the expectation operator to Eq. (8), and noting that )())(( 11 xUxUE nn    

and )())(( 11 xVxVE nn   , we obtain 
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A recursion relation for the expected value of the Hosoya polynomial of a random 

benzenoid chain can be obtained from Eq. (6) by using Rk in place of  Bk  (k=n, n+1) and by 
using the expectation operator: 

 

.432))()(()()()( 232
1  xxxxVxUxxxHxH nnnn                      (10) 
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The system of recursion equations (9) and (10) holds for  n ≥ 0, and has boundary 
conditions: 

.1)(,1)(,2)( 000  xxVxxUxxH                            (11) 

3.  SOLUTION FOR THE SYSTEM OF RECURSION EQUATIONS 

To solve the recursion equations (9) and (10), we use the method of the generating function 
[1]. First define the following generating functions in variable t. Let  
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From  Eqs. (9)(11), we get relations of their generating functions as follows: 
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As Eqs. (12a) and (12b) comprise a system of two linear equations in two variables 
U(t) and  V(t), a straight forward calculation results in 
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Substituting Eq. (13) for Eq. (12) and then rearranging, we can easily get: 
 

).
1

1
1

1(
)1)(1(

)1()(
)1)(1(

)2)1(()1(
)1)(1)(1(

)1()1(
)1()1()1(

)1()1(
)1(

)432(
1

2)(

22

3342
21

2

32

2

2232

2

23

xttxtat
txxpp

tx
txxqx

txtx
txxq

xttx
txxq

t
txxx

t
xtH






























              (14) 

Applying two special cases of Newton's generalized binomial theorem 
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to Eq. (14) and then rearranging it, we get 
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4. RESULTS AND DISCUSSION 

From Eq. (15), we have the following main theorem. 

Theorem 4.1. Let Hn(x) be the expected value of the Hosoya polynomial of a random 
benzenoid chain with n  hexagons. Then 
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We can obtain some corollaries by taking parameters as special values or Eqs. (1)(3). 
When q =1 (in this case  p1 = p2 = 0), a random benezoid chain is definitely a linear 
benzenoid chain, i.e., a benzoid chain without no turns. So from Theorem 4.1 we have 
 
Corollary 4.2. [21] Let G be a benzenoid chain with n hexagons. If  G has no turns, then 
the Hosoya polynomial of G is 

2 2 2 2

2
( 4)( 1) 2 ( 1)( 1)( , ) 2 .
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nn x x x x x xH G x x
x x
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If  p1=1 or  p2=2, a random benzenoid chain with n hexagons is definitely a helicene with  n 
hexagons, then we get 
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Corollary 4.3.  [21] Let G be a helicene with n hexagons. Then the Hosoya polynomial of  
G is 
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 In addition, from Eqs. (1)(3), we can obtain the expected values of some molecular 
structure descriptors from Theorem 4.1. 
 
Corollary 4.4. [13] The expected value Wn of the Wiener index of a random benzenoid 
chain with n hexagons is 
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Corollary 4.5. The expected value  WWn of the hyper-Wiener index of a random benzenoid 
chain with  n hexagons is 
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Corollary 4.6. The expected value  TSZn of the Tratch-Stankevitch-Zefirov index of a 
random benzenoid chain with n  hexagons is 
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