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ABSTRACT In this paper operational matrix of Bernstein Polynomials (BPs) is used to 
solve Bratu equation. This nonlinear equation appears in the particular elecotrospun 
nanofibers fabrication process framework. Elecotrospun organic nanofibers have been 
used for a large variety of filtration applications such as in non-wovens and filtration 
industries. By using operational matrix of integration and multiplication the investigated 
equations are turned into set of algebraic equations. Numerical solutions show both 
accuracy and simplicity of the suggested approach. 
 
KEYWORDS Bratu equation • Elecotrospun nanofibers • Bernstein polynomials • 
Operational matrix.  

 

1. INTRODUCTION 

Electrospinning has been recognized as one of the most convenient, direct and 
economical methods for the fabrication of polymer nanofibers. Various polymers have 
been successfully electrospun into ultrafine fibers in recent years mostly in solvent 
solution and some in melt form. Electrospinning is a process for elaborating nanofibers 
with diameters about nm20  by forcing a fluidified polymer through a spinneret by an 
electric field. The elements required for electrospinning include a polymer source, a high-
voltage supply (HV), and a collector (as shown in Fig. 1 ) [4]. Through several different 
collection methods, this process yields nonwoven, nanoporous materials. The basis of 
electrospinning is derived from a large change in electric potential. Many electrospinning 
device were designed in vibration-electrospinning [14, 9], magneto-electrospinning [18], 
bubble-electrospinning [12, 10].  
 In this paper, a mathematical model of the electrospinning process has been 
associated to Bratu equation through thermo-electro-hydrodynamics balance equations. 
This model is considered in terms of fluid velocity at the level of the outer edge of the 
syringue. It has been showed that the problem can be expressed through second-order 
nonlinear ordinary differential Bratue quation: 
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(ݔ)ᇱᇱݑ + ௨(௫)݁ߣ = 0,   0 < ݔ <  is constant                           (1) ߣ       ,1

 with initial conditions (0)ݑ = ܾ଴ = 0 and ݑᇱ(0) = ܾଵ = 0 will be investigated.  
 

 
Figure  1.  Electrospinning process setup.  

 
Colantoni and Boubaker established a model which is the monodimensional Bratu 
equation as following [4]:  

⎩
⎪
⎨

⎪
⎧߲ଶݑ

ଶݔ߲ − ௨݁ߣ = 0,                          

ߣ :ℎݐ݅ݓ =
ܫ)ଶܧ 18 − ଶ(ܧଶ݇ݎ

ସݎଶߩ .
� 

where ߩ is material density, ݎis is the radius of the jet atxial coordinate ݔ (Fig. 1), ܫis the 
electrical current intensity, ݇is a constant which depend only on temperature in the case 
of an in compressible and E  is electric field in the axial direction.  
 The approximation and numerical techniques are utilized to solve this equation. 
Some of these methods were Bspline method [3], Chebyshev wavelets method [16], 
Adomian decomposition method [15], Variational iteration method [1, 8] and other 
method [6,7,13]. 
 In this study, we will generalize the operational matrix for fractional integration 
and multiplication within Bernstein Polynomials. Bernstein polynomials (B-polynomials) 
have many useful properties. They play a prominent role in various areas of mathematics 
and have frequently been used in the solution of integral equations, differential equations 
and approximation theory; see e.g., [5, 17]. The core of this approach is to convert the 
given problem into a system of algebraic equations. This transformation is possible by 
expanding the unspecified function within Bernstein Polynomials. The speed of the 
computation increases. To evaluate the unknown coefficients which appear in this 
approach, we utilized the operational matrix of integral and multiple. 
 Now we are ready to present the organization of our wok: In Section 2, some 
properties of Bernstein polynomials is presented. The operational matrix is computed for 
integration and produc in section 3. The suggested approach is used to approximate the 
Bratu equation in the next section. After that we apply the proposed technique to Bratu 
equation in section 5. A conclusion part in Section 6 closed the manuscript. 
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2. BERNSTEIN POLYNOMIALS AND THEIR PROPERTIES 

2.1  DEFINITION OF BERNSTEIN POLYNOMIALS 
 

The Bernstein polynomials of the ݉th degree on the interval [0, 1] are defined as [2]: 
 

(ݔ)௜,௠ܤ  = ൫௠
௜ ൯ݔ௜(1 − ௠ି௜(ݔ ,   0 ≤ ݔ ≤ ݉.                                (2) 

 
The following Bernstein polynomials satisfy recursive definition:  

 
(ݔ)௜,௠ܤ  = (1 − (ݔ)௜,௠ିଵܤ(ݔ + ݅         ,(ݔ)௜ିଵ,௠ିଵܤݔ = 0,1, ⋯ , ݉.      (3) 

 
 It can easily be shown that each of the Bernstein polynomials is positive and also 
the sum of all the Bernstein polynomials is unity for all real ݔ ∈ [0,1], i.e., 
∑ (ݔ)௜,௠ܤ = 1௠

௜ୀ଴ . By using the binomial expansion of (1 −  ௠ି௜, Bernstein(ݔ
polynomials can be show in terms of linear combination of the basis functions  

 
(ݔ)௜,௠ܤ  = ൫௠

௜ ൯ݔ௜(1 − ௠ି௜(ݔ = ൫௠
௜ ൯ݔ௜൫∑ (−1)௞൫௠ି௜

௞ ൯ݔ௞௠ି௜
௞ୀ଴ ൯ 

                           = ∑ (−1)௞൫௠
௜ ൯௠ି௜

௞ୀ଴ ൫௠ି௜
௞ ൯ݔ௜ା௞ ,         ݅ = 0,1, ⋯ , ݉.                   (4) 

 

 We can show the Bernstein polynomials by ܤ௜,௠(ݔ) = ௜ାଵܣ ௠ܶ(ݔ), for ݅ =
0, 1, ⋯ , ݉, where  

 

௜ାଵܣ = ൥0,0, ⋯ ,0ᇩᇭᇪᇭᇫ
௜ ௧௜௠௘௦

, (−1)଴൫௠
௜ ൯, (−1)ଵ൫௠

௜ ൯൫௠ି௜
ଵ ൯, ⋯ , (−1)௠ି௜൫௠

௜ ൯൫௠ି௜
௠ି௜൯൩,  

 and 

௠ܶ(ݔ) = ቎
1
ݔ
⋮

௠ݔ

቏. 

 
 Now if we define (݉ + 1) × (݉ + 1) matrix ܣ such that  

 

ܣ = ൦

ଵܣ
ଶܣ
⋮

௠ାଵܣ

൪, 

then we have ߶(ݔ) = ܣ ௠ܶ(ݔ), where ߶(ݔ) = ,(ݔ)଴,௠ܤൣ ,(ݔ)ଵ,௠ܤ ⋯ , ൧்(ݔ)௠,௠ܤ
and ܣ is 

an upper triangular matrix given by:  
 

ܣ =

⎣
⎢
⎢
⎢
⎡(1)଴൫௠

଴ ൯ (1)ଵ൫௠
଴ ൯൫௠ି଴

ଵି଴ ൯ ⋯ (1)௠ି଴൫௠
଴ ൯൫௠ି଴

௠ି଴൯

0 (1)଴൫௠
௜ ൯ ⋯ (1)௠ି௜൫௠

௜ ൯൫௠ି௜
௠ି௜൯

⋮
0

⋱
⋯

⋱
0

⋮
(1)଴൫௠

௠൯ ⎦
⎥
⎥
⎥
⎤
, 
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and |ܣ| = ∏ ݉൫௠
௜ ൯௠

௜ୀ଴ , so ܣ is an invertible matrix.  
 

2.2  APPROXIMATION OF FUNCTION 
The set of Bernstein polynomials൛ܤ�଴,௠ , ଵ,௠ܤ  , ⋯ , ,ଶ[0ܮ ௠,௠ൟ�  in Hilbert spaceܤ 1] is a 
complete basis [11]. Therefore, any polynomial of degree ݉can be expanded in terms of 
linear combination of  ܤ௜,௠ : 

(ݔ)݂  = ∑ ܿ௜ܤ௜,௠ = ௠,߶்ܥ
௜ୀ଴                                   (5) 

 
 where ߶் = ଴,௠ܤൣ , ଵ,௠ܤ , ⋯ , ்ܥ ௠,௠൧ andܤ = [ܿ଴, ܿଵ, ⋯ , ܿ௠]. Then ்ܥcan be obtained by  

 
,��߶〉்ܥ ߶〉 = 〈݂��, ߶〉,                                              (6) 

 where  
   

〈݂��, ߶〉 = ∫ ݔ்݀(ݔ)߶(ݔ)݂ = ൣ〈݂��, ,〈଴,௠ܤ 〈݂��, ,〈ଵ,௠ܤ ⋯ , 〈݂��, ௠,௠〉൧,ଵܤ
଴                  (7) 

 
 and 〈߶��, ߶〉 is called dual matrix of ߶ which is showed by ܳ, and the ܳ is obtained as:  

 
ܳ = 〈߶��, ߶〉 = ∫ ଵ,ݔ்݀(ݔ)߶(ݔ)߶

଴                                               (8) 
 and then  

்ܥ = ቀ∫ ଵݔ்݀(ݔ)߶(ݔ)݂
଴ ቁ ܳିଵ.                                        (9) 

  The elements of the dual matrix, Q , are easily computed by  
 

(ܳ)௜ାଵ,௝ାଵ = න (ݔ)௜,௠ܤ
ଵ

଴
 ݔ݀(ݔ)௝,௠ܤ

                                                 =  ൫௡
௜ ൯ ቀ௡

௝ቁ ∫ (1 − ଵ ݔ݀ ௜ା௝ݔଶ௡ି(௜ା௝)(ݔ
଴  

                           =
൫೙

೔ ൯ቀ೙
ೕ ቁ

(ଶ௡ାଵ)ቀ మ೙
೔శೕቁ

,               ݅, ݆ = 0,1, ⋯ , ݉. 

3. OPERATIONAL MATRIX OF BERNSTEIN POLYNOMIALS 

3.1  THE OPERATIONAL MATRIX OF INTEGRAL 

In this section, we describe breifley operational matrix for the Riemann-Liouville integral 
on the basis of BPs from order ݉ as[17]: 

 
∫ ݐ݀(ݐ)߶ ≃௫

଴  (10)                                         ,(ݔ)߶ܲ
 

 by substituting ߶(ݔ) = ܣ ௠ܶ(ݔ) in Eq. (10) we get:  
 

 ∫ ݐ݀(ݐ)߶ = ܣ ∫ ௠ܶ(ݐ)௫
଴ ݐ݀ = ∫ൣܣ 1௫

଴ ,ݐ݀ ∫ ௫ݐ
଴ ,ݐ݀ ⋯ , ∫ ௠௫ݐ

଴ ൧௫ݐ݀
଴

்
 

                                           = ܣ ቂݔ, ௫మ

ଶ
, ⋯ , ௫೘శభ

௠ାଵ
ቃ

்
=  ௠,                                          (11)ܶܦܣ
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 where ܦ is an (݉ + 1) × (݉ + 1) matrix given by  
 

ܦ  =

⎣
⎢
⎢
⎢
⎡1
0

0
ଵ
ଶ

…
…

0
0

⋮ ⋮ ⋱ 0
0 0     … ଵ

௠ାଵ⎦
⎥
⎥
⎥
⎤
, 

and  

 ܶ௠ = ቎

ݔ
ଶݔ

⋮
ଵା௠ݔ

቏. 

 Now we approximate ݔ௜ାଵ by ݉ + 1 terms of the Bernstein basis: 
 

௜ାଵݔ ≃ ௜ܧ
 (12)                                                           .(ݔ)߶்

Therefore we have  
 

௜ܧ = ܳିଵ ቀ∫ ଵݔ݀(ݔ)௜ାଵ߶௠ݔ
଴ ቁ                                                                             (13) 

    = ܳିଵ ቂ∫ ଵ,ݔ݀(ݔ)଴,௠ܤ௜ାଵݔ
଴ ∫ ଵ,ݔ݀(ݔ)ଵ,௠ܤ௜ାଵݔ

଴ ⋯ , ∫ ଵ,ݔ݀(ݔ)௠,௠ܤ௜ାଵݔ
଴ ቃ

்
   

                  = ܳିଵܧ௜ . 
  

where ܧ௜ = ,௜,଴ܧൣ ,௜,ଵܧ ⋯ ,   ௜,௠൧ andܧ
 

௜,௝ܧ  = ∫ ݔ݀(ݔ)௜,௝ܤ௜ାଵݔ = ௠!୻(௜ା௝ାଶ)
୨!୻(௜ା௠ାଷ)

,      ݅, ݆ = 0,1, ⋯ , ݉,ଵ
଴                   (14) 

 
where ܧ is an (݉ + 1) × (݉ + 1) matrix that has vector ܳିଵܧ௜ for ith columns. 
Therefore, we can write  

(ݔ)߶ܲ = ଴ܧ]ܦܣ
,(ݔ)߶் ଵܧ

,(ݔ)߶் ⋯ , ௠ܧ
் = ்[(ݔ)߶  (15)                          .(ݔ)߶்ܧܦܣ

Finally, we obtain  
 ∫ ݐ݀ (ݐ)߶ ≃ ଵ(ݔ)߶ܲ

଴ ,                                          (16) 
 where  

 ܲ =  (17)                                                       ,ܧܦܣ
 

is called the Bernstein polynomials operational matrix of fractional integration.  
 
3.2  BPOLYNOMIALS OPERATIONAL MATRIX OF PRODUCT 
It is always necessary to evaluate the product of ߶(ݔ) and ߶(ݔ)், which is called the 
product matrix for the Bernstein polynomials basis. The operational matrices for the 
product ܥመ is given by  

்(ݔ)߶(ݔ)߶்ܥ  ≃  መ,                                           (18)ܥ்(ݔ)߶

where ܥመ is an (݉ + 1) × (݉ + 1) matrix. So we have 

்(ݔ)߶(ݔ)߶்ܥ  = )(ݔ)߶்ܥ ௠ܶ(ݔ)்்ܣ) = ,(ݔ)߶்ܥൣ ,൯(ݔ)߶்ܥ൫ݔ ⋯ ,  ்ܣ൯൧(ݔ)߶்ܥ௠൫ݔ

                          = ൣ∑ ܿ௜
௠
௜ୀ଴ ௜,௠ܤ , ∑ ܿ௜ݔ௠

௜ୀ଴ ௜,௠ܤ , ⋯ , ∑ ܿ௜
௠
௜ୀ଴  ௜,௠൧                               (19)ܤ௠ݔ
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 Now, we approximate all functions ݔ௞ܤ௜,௠(ݔ) in terms of ൛ܤ௜,௠(ݔ)ൟ

௜ୀ଴
௠

 for 
݅, ݇ = 0,1, ⋯ , ݉. By (5), we have  

௜,௠ܤ௠ݔ  ≃ ݁௞,௜
் ߶௠(ݔ)                                             (20) 

that ݁௞,௜ = ൣ݁௞,௜
଴ , ݁௞,௜

ଵ , ⋯ , ݁௞,௜
௠ ൧்

, then we obtain the components of the vector of ݁௞,௜ 
 

݁௞,௜ = ܳିଵ ቆන ݔ݀(ݔ)߶(ݔ)௜,௠ܤ௞ݔ
ଵ

଴
ቇ 

       = ܳିଵ ቂ∫ ଵݔ݀(ݔ)଴,௠ܤ(ݔ)௜,௠ܤ௞ݔ
଴ , ∫ ,ݔ݀(ݔ)ଵ,௠ܤ(ݔ)௜,௠ܤ௞ݔ ⋯ , ∫ ଵݔ݀(ݔ)௠,௠ܤ(ݔ)௜,௠ܤ௞ݔ

଴
ଵ

଴ ቃ
்

 

       = ொషభ

ଶ௠ା௞ାଵ
ቈ

൫೘
బ ൯

ቀమ೘శೖ
೔శೖ ቁ

,
൫೘

భ ൯

ቀమ೘శೖ
೔శೖశభቁ

, ⋯ ,
൫೘

೘൯

ቀ మ೘శೖ
೔శೖశ೘ቁ

቉
்

,           ݅, ݇ = 0,1, ⋯ , ݉.                                     (21) 

 
Thus we obtain finally  

 

෍ ܿ௜ݔ௞ܤ௜,௠(ݔ)
௠

௜ୀ଴

= ෍ ܿ௜ ൮෍ ݁௞,௜
௝

௠

௝ୀ଴

൲(ݔ)௝,௠ܤ
௠

௜ୀ଴

= ෍ (ݔ)௝,௠ܤ ൭෍ ܿ௜݁௞,௜
௝

௠

௜ୀ଴

൱
௠

௝ୀ଴

 

                                         = ∑ൣ்(ݔ)߶ ܿ௜݁௞,௜
଴௠

௜ୀ଴ , ∑ ܿ௜݁௞,௜
ଵ ,௠

௜ୀ଴ ⋯ , ∑ ܿ௜݁௞,௜
௠௠

௜ୀ଴ ൧்
 

                                         = ,௞,଴݁ൣ்(ݔ)߶ ݁௞,ଵ, ⋯ , ݁௞,௠൧ܥ = ்(ݔ)߶
௞ܸାଵ(22)                    , ܥ 

where ௞ܸାଵ(݇ = 0,1, ⋯ , ݉) is an(݉ + 1) × (݉ + 1) matrix that has vectors ݁௞,௜(݅ =
0,1, ⋯ , ݉) given, for each columns. If we choose an (݉ + 1) × (݉ + 1) matrix ̅ܥ =
[ ଵܸܿ, ଶܸܿ, ⋯ , ௠ܸାଵܿ ], from (19) and (22) we can write: 

 
்(ݔ)߶(ݔ)߶்ܥ  ≃  (23)                                             ்ܣ̅ܥ்(ݔ)߶

 
 and therefore we obtain the operational matrix of product, ܥመ =   .்ܣ

 

4. SOLUTION OF BRATU EQUATION 

Consider Bratu equation given in (1). We first approximate derivative by the Bernstein 
basis   as follows:  

(ݔ)′′ݑ  =  (24)                                                         (ݔ)߶்ܥ
 where  

்ܥ  = [ܿ଴, ܿଵ, ⋯ , ܿ௠],                                                    (25) 
 ߶் = ଴,௠ܤൣ , ଵ,௠ܤ , ⋯ ,  ௠,௠൧,                                         (26)ܤ

are unknowns. Using initial conditions (ݔ)ݑ can be represented as  
(ݔ)ݑ = ߶ଶ்ܲܥ =  (27)                       ,߶்ܩ

where ்ܲܥଶ =  and ܲ is the operational matrix of integration. Here we use the Taylor்ܩ
expansion of the strongly nonlinear term as:  

݁௨ = 1 + ݑ +
ଶݑ

2 +
ଷݑ

3! +
ସݑ

4!  
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 Also using (5) and (23) we approximate constant functions 1 and nonlinear terms 
by the Bernstein basis as:  

1 = ்݀߶,                                                     (28) 
(ݔ)ଶݑ = ܩ்߶߶்ܩ =  (29)                              ,ܩ෠ܩ்߶
(ݔ)ଷݑ =  (30)                                                ,ܩ෠ଶܩ்߶
(ݔ)ସݑ =  (31)                                                ,ܩ෠ଷܩ்߶

 

 Now, by substituting (27) and (28)(31), into (1) we have  

ܥ்߶       = ߣ ቀ߶்݀ + ܩ்߶ + ଵ
ଶ

ܩ෠ܩ்߶ + ଵ
ଷ!

ܩ෠ଶܩ்߶ + ଵ
ସ!

 ቁ                         (32)ܩ෠ଷܩ்߶
 or  

߶் − ൬ܥ − ߣ ቀ߶்݀ + ܩ்߶ + ଵ
ଶ

ܩ෠ܩ்߶ + ଵ
ଷ!

ܩ෠ଶܩ்߶ + ଵ
ସ!

ቁ൰ܩ෠ଷܩ்߶ = 0.              (33) 

  Finally, we obtain the following linear system of algebraic equations:  

 ൬ܥ − ߣ ቀ߶்݀ + ܩ்߶ + ଵ
ଶ

ܩ෠ܩ்߶ + ଵ
ଷ!

ܩ෠ଶܩ்߶ + ଵ
ସ!

ቁ൰ܩ෠ଷܩ்߶ = 0,              (34) 

that by solving this system we can obtain the vector ܥ. Consequently determine the 
approximate value of (ݔ)ݑ can be calculated from (27).  

 

5. ILLUSTRATIVE EXAMPLE 

Below we use the presented approach in order to solve a Bratu equation.  

Example. Consider the second-order initial value problem [1,3,15]  
 

(ݔ)ᇱᇱݑ − ௨(௫)݁ߣ = 0,           0 < ݔ < 1,                (35) 
 

subject to the initial condition (0)ݑ = ᇱ(0)ݑ = 0. The exact solution is (ݔ)ݑ =
2ln (cos(ݔ)). By applying the technique described in Section 4, in Figure 2 the exact 
solution together with the approximate solutions (ݔ)ݑ show for different values of 
݉ = 6, 8, 12 and ߣ = 2. The approximate values of (ݔ)ݑ converge to the exact solutions 
with increase in the number of the Bernstein basis. In Table 1, the obtained results of BPs 
with ݉ = 12 and methods in [4] are showed.   

 
Figure 2. The exact solution: (blue line) and when 2=  approximation 
solutions for m = 12 (red line), m = 8 (dotted) and m = 6 (Longdashed). 
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Table 1. Solution of Bratu equation. 

x Exact BPEs EVIM BPs 
0.03448 0.00118911 0.00118 0.00117 0.00118912 
0.10345 0.010721 0.01061 0.0105 0.0107219 
0.17241 0.0298737 0.02958 0.02929 0.0298804 
0.24138 0.058839 0.05825 0.05766 0.0588668 
0.31034 0.097897 0.09692 0.09592 0.0979798 
0.37931 0.147465 0.14689 0.14632 0.147662 
0.44828 0.20807 0.20599 0.20391 0.208484 
0.51724 0.280393 0.27761 0.27483 0.281178 
0.58621 0.365339 0.36178 0.35822 0.366712 
0.65517 0.464004 0.45943 0.45485 0.466255 
0.72414 0.577847 0.57211 0.56638 0.581339 
0.79313 0.708731 0.70165 0.69462 0.713882 
0.86207 0.858899 0.85038 0.84186 0.866119 
0.93103 1.03165 1.02144 1.01122 1.04121 
1 1.23125 1.21906 1.20687 1.24298 
 
 

6. CONCLUSION 

In this work we have performed an accurate and efficient approachbased using the 
Bernstein polynomials for solving the second-order initial value problems of Bratutype. 
The Bernstein polynomials operational matrixes of integration and multiplication are 
used to reduce the problem to the solution of nonlinear algebraic equations. Illustrative 
example are presented to demonstrate the applicability and validity of the approach. We 
used Mathematica for computations.  
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