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Abstract

Let G be a graph with vertex set V (G). The vertex-degree
function index Hf (G) is defined on G as:

Hf (G) =
∑

u∈V (G)

f (du) ,

where f (x) is a function defined on positive real numbers. Our
main concern in this paper is to study Hf over the set Tn of
trees with n vertices, over the set Tn,k of trees with n vertices
and k branching vertices, and over the set T pn of trees with n
vertices and p pendant vertices. Namely, we will show in each
of these sets of trees that it is possible via branching operations
to construct a strictly monotone sequence of trees that reaches
the extremal values of Hf , when f (x+ 1) − f (x) is a strictly
increasing function.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction
Let G be a simple connected graph with vertex set V (G). The degree of a vertex u ∈ V (G) will
be denoted by du = du (G). We say that the vertex u ∈ V (G) is a branching vertex if du ≥ 3,
while it is a pendant vertex if du = 1. The vertex-degree function index Hf (G) is defined on
G as:

Hf (G) =
∑

u∈V (G)

f (du) ,

where f (x) is a function defined on positive real numbers [1]. For example, the first Zagreb
indexM1 (G) =

∑
u∈V (G) d

2
u is a special case when f (x) = x2 [2], the forgotten index F (G) =∑

u∈V (G) d
3
u is a special case when f (x) = x3 [3]. More generally, the zeroth-order general
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Randić index 0Rα (G) =
∑
u∈V (G) d

α
u , where α /∈ {0, 1} is a real number, is a particular case

when f (x) = xα [4, 5]. For recent results on the degree function index of graphs we refer to
[6–9].

We are particularly interested in the vertex-degree function index over trees, i.e., connected
graphs with no cycles. Let T be a tree. A branch at u ∈ V (T ) is a maximal subtree containing
u as an end vertex. Hence, the number of branches at u is du. We say that tree U is obtained
from tree T by a branching operation, denoted as U = β (T ) , when U is obtained from T by
moving one branch of T at u ∈ V (T ) to another vertex v ∈ V (T ) (see Figure 1).

u
v

a

T

u
v

a

U

Figure 1: U is obtained from T by a branching operation.

Let us denote by Tn the set of trees with n vertices and let F ⊆ Tn. We define the following
relation on F : if S, T ∈ F we write S � T in F if and only if there exists a sequence {Uj}kj=1 ⊆ F
such that U0 = S, Uk = T, Uj = β (Uj−1) for all 1 ≤ j ≤ k, and

Hf (S) = Hf (U0) > Hf (U1) > · · · > Hf (Uk) = Hf (T ) .

In this case we say that {Uj}kj=1 is a strictly monotone sequence of trees.
Our main concern in this paper is to study the relation � in F on three significant classes:

1. F = Tn, the set of trees with n vertices;

2. F = Tn,k, the set of trees with n vertices and k branching vertices;

3. F = T pn , the set of trees with n vertices and p pendant vertices.

We will show that given a tree in F , it is possible via branching operations to construct a
strictly monotone sequence of trees in F that reach the extremal values of Hf , when f (x+ 1)−
f (x) is a strictly increasing function, a property satisfied by strictly convex functions. Examples
of such functions are f (x) = xα, when α > 0, which induce the general zeroth-order Randić
indices 0Rα. From this general approach, it is possible to deduce several well-known results on
the extremal value problem of Hf over the classes of trees mentioned above [10–12].

2 Variation of Hf under branching operations on trees
If T ∈ Tn, then the degree sequence of T is expressed in the form (d1, d2, . . . , dn), where
d1 ≥ d2 ≥ · · · ≥ dn are the degrees of the vertices of T in descending order. Note that∑n
i=1 di = 2 (n− 1). Moreover, any non-increasing sequence (e1, e2, . . . , en) of positive integers

such that
∑n
i=1 ei = 2 (n− 1) is the degree sequence of some tree in Tn.
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In this section we study the variation of Hf when a special branching operation is applied
to a tree T . Let i, j ∈ {1, . . . , n} such that

i < j, di > di+1, dj−1 > dj , and di > dj + 1. (1)

Consider Operation I:

(d1, . . . , di, . . . , dj , . . . , dn) (d1, . . . , di − 1, . . . , dj + 1, . . . , dn) , (2)

where only the positions i, j are modified. By conditions given in (1), the sequence on the right
of (2) is non-increasing. In fact, the transformation given in (2) corresponds to a branching
operation on T , by moving a branch of T at vertex i to the vertex j.

In the other direction, let j ∈ {1, . . . , n} such that

j > 1 and dj > dj+1. (3)

Consider Operation II:

(d1, . . . , dj , . . . , dn) (d1 + 1, . . . , dj − 1, . . . , dn) , (4)

where only the positions 1, j are modified. By condition (3), the sequence on the right of (4)
is non-increasing. The transformation given in (4) corresponds to a branching operation on T ,
by moving a branch of T at vertex j to the vertex 1.

We will assume throughout this paper that f (x+ 1)−f (x) is a strictly increasing function.
Clearly, every strictly convex function f (x) satisfies this property.

Example 2.1. Consider the function f (x) = x2 + bxc. Then f (x) is not convex since it is
discontinuous at each positive integer. However, f (x+ 1)−f (x) = 2x+2 is a strictly increasing
function.

With our next result, we show that Hf is strictly monotone with respect to the operations
defined above.

Theorem 2.2. Let T be a tree with degree sequence (d1, d2, . . . , dn).

1. Assume that i, j satisfy conditions given in (1). If U is the tree obtained from T by
operation I, then Hf (T ) > Hf (U);

2. Assume that j satisfies condition (3). If V is the tree obtained from T by operation II,
then Hf (T ) < Hf (V ).

Proof. Let h (x) = f (x+ 1)− f (x).

1. If U is obtained from T by operation I, then it follows from (2) that

Hf (T )−Hf (U) = f (di)− f (di − 1) + f (dj)− f (dj + 1)

= h (di − 1)− h (dj) > 0,

since di > dj + 1 and h (x) is strictly increasing.

2. If V is obtained from T by operation II, then by (4),

Hf (T )−Hf (V ) = f (d1)− f (d1 + 1) + f (dj)− f (dj − 1)

= h (dj − 1)− h (d1) < 0,

since d1 ≥ dj > dj − 1 and h (x) is strictly increasing.

�
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3 Trees with a fixed number of vertices
We first show that it is possible to reach the path Pn from any tree T 6= Pn, by a sequence of
branching tree operations which have strictly decreasing value of Hf .

Theorem 3.1. If T ∈ Tn and T 6= Pn, then T � Pn in Tn.
Proof. Let (d1, d2, . . . , dn) be the degree sequence of T . Since T 6= Pn, then ∆ (T ) ≥ 3. Choose
i such that di = ∆ and di+1 < ∆. On the other hand, choose j such that dj = 1 and dj−1 > 1.
Then di ≥ 3 > 2 = dj+1. Consequently, i < j satisfy conditions given in (1), so by Theorem 2.2,
after we apply operation I to T we obtain a tree U1 ∈ Tn such thatHf (T ) > Hf (U1). If U1 = Pn
we are done. Otherwise, we repeat the previous argument to construct a tree U2 ∈ Tn, such
that Hf (U1) > Hf (U2) . Eventually, after a finite number of steps we arrive at Uk = Pn, where
Uj = β (Uj−1) for all 1 ≤ j ≤ k and

Hf (T ) = Hf (U0) > Hf (U1) > Hf (U2) > · · · > Hf (Uk) = Hf (Pn) .

�

In the other direction, we can obtain the star Sn from any tree T 6= Sn, by a sequence of
trees which have strictly increasing value of Hf .

Theorem 3.2. If T ∈ Tn and T 6= Sn, then Sn � T in Tn.
Proof. Since T 6= Sn, the degree sequence of T has the form (d1, . . . , dj , 1, . . . , 1) , where j > 1
satisfies d1 ≥ dj > 1 = dj+1. Hence, j satisfies condition (3), so by Theorem 2.2, after applying
operation II to the tree T we obtain a tree V1 ∈ Tn such that Hf (V1) > Hf (T ). If V1 = Sn
we are done. Otherwise, we repeat the previous argument to construct a tree V2 ∈ Tn such
that Hf (V2) > Hf (V1) . After a finite number of steps we arrive at a tree Vk ∈ Tn such that
Vk = Sn, where Vj = β (Vj−1) for all 1 ≤ j ≤ k, and

Hf (Sn) = Hf (Vk) > · · · > Hf (V2) > Hf (V1) > Hf (V0) = Hf (T ) .

�

Example 3.3. In Table 1 we illustrate the sequences of trees given in Theorems 3.1 and 3.2.
Note that in each step we ‘move’ the maximal subtree at u which contains the vertex a, to the
vertex v.

Remark 1. Note that Theorems 3.1 and 3.2 are stronger results than [10, Theorems 4 and
8], since they not only present the extremal trees, but also state the existence of a strictly
monotone sequence of trees that reach extreme values of Hf , starting from any tree in Tn.

Recall that the zeroth-order general Randić index is defined as 0Rα (T ) = Hf (G) where
f(x) = xα. In the next result, we affirm that from any tree in Tn it is possible to construct a
strictly monotone sequence of trees that reach maximum and minimum trees with respect to
the zeroth-order general Randić index, a result obtained in [11].

Corollary 3.4. Let T ∈ Tn.
1. If T 6= Pn, then T � Pn in Tn if α ∈ (−∞, 0) ∪ (1,+∞) and, Pn � T in Tn if α ∈ (0, 1).

2. If T 6= Sn, then Sn � T in Tn if α ∈ (−∞, 0) ∪ (1,+∞) and, T � Sn in Tn if α ∈ (0, 1).

Proof. For α ∈ (−∞, 0) ∪ (1,+∞) it holds that f(x+ 1)− f(x) is strictly increasing function.
Statements 1 and 2 follow from Theorems 3.1 and 3.2, respectively.

On the other hand, since f(x + 1) − f(x) is strictly decreasing function if α ∈ (0, 1), we
apply Theorems 3.1 and 3.2 to Hf (G) with f(x) = −xα. �
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4 Trees with fixed number of vertices and branching ver-
tices

Let us denote by Tn,k the set of trees with n vertices and k branching vertices.

Lemma 4.1. The set Tn,k is nonempty if and only if n ≥ 2k + 2. If n = 2k + 2, then any tree
T ∈ T2k+2,k has degree sequence

(
3, . . . , 3︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
k+2

)
.

Proof. Recall that if a tree T ∈ Tn,k has p pendant vertices and X is the set of branching
vertices, then

p− 2 =
∑
v∈X

(dv − 2) ≥ k. (5)

If n2 is the number of vertices of degree 2 in T , then using (5) we have:

n = k + n2 + p ≥ 2k + n2 + 2 ≥ 2k + 2. (6)

On the other hand, from (6),

0 ≤ n2 ≤ n− 2k − 2.

If n = 2k + 2, then for any tree T ∈ T2k+2,k, n2 = 0 and p = k + 2. From (5)

k =
∑
v∈X

(dv − 2) ,

which implies that dv = 3 for each v ∈ X . Then, any tree T ∈ T2k+2,k has degree sequence(
3, . . . , 3︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
k+2

)
. �

Example 4.2. The trees in Figure 2 belong to T2k+2,k.

· · ·

Figure 2: Trees in T2k+2,k.

In what follows in this section we consider the set Tn,k with n > 2k + 2. We shall see that
the trees in

A =

T ∈ Tn,k : T has degree sequence
(

3, . . . , 3︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
n−2k−2

, 1, . . . , 1︸ ︷︷ ︸
k+2

) ,

have the minimal value of Hf among all trees in Tn,k.

Lemma 4.3. Let A ∈ Tn,k. Then A ∈ A if and only if ∆ (A) = 3.



6 R. Cruz et al. / A Study of Vertex-Degree Function Indices via Branching....

Table 1: Decreasing and increasing sequences of trees in T11.

Sequence in Theorem 3.1 Sequence in Theorem 3.2

ua

v

U0

u va

V0

u

a v

U1

v

u a

V1

v u

a

U2

v
au

V2

u
a

v

U3

v u

a

V3

u
a

v

U4

v
a

u

V4

U5 V5
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Proof. Clearly, A ∈ A implies ∆ (A) = 3. Conversely, assume that A ∈ Tn,k and ∆ (A) = 3.
Then the degree sequence of A is of the form

(
3, . . . , 3︸ ︷︷ ︸

k

, 2, . . . , 2︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
p

)
. By relation (5),

p = k+ 2, and since k+m+ p = n, we deduce that m = n− 2k− 2. Consequently, A ∈ A. �

Theorem 4.4. If T ∈ Tn,k and T /∈ A, then there exists A ∈ A such that T � A in Tn,k.

Proof. Let (d1, d2, . . . , dn) be the degree sequence of T . Since T ∈ Tn,k and T /∈ A, then by
Lemma 4.3, ∆ ≥ 4. Let i such that di = ∆ > di+1, and j > 1 such that dj = 1 but dj−1 > 1.
Note that di ≥ 4 > 2 = dj + 1. Hence conditions given in (1) hold and so by Theorem 2.2, after
applying operation I to the tree T we find a tree U1 ∈ Tn such that Hf (T ) > Hf (U1). Note
that since di ≥ 4 and dj = 1 in T , then U1 ∈ Tn,k. If U1 ∈ A then we are done. Otherwise, using
a similar argument as before, we construct a tree U2 ∈ Tn,k such that Hf (U2) > Hf (U1). After
a finite number of steps we arrive at a tree Us ∈ Tn,k such that Us = A ∈ A, Uj = β (Uj−1) for
all j = 1, . . . , s and

Hf (T ) = Hf (U0) > Hf (U1) > · · · > Hf (Us) = Hf (A) .

�

Now we consider the set

B =

T ∈ Tn,k : T has degree sequence
(
n− 2k + 1, 3, . . . , 3︸ ︷︷ ︸

k−1

, 1, . . . , 1︸ ︷︷ ︸
n−k

) .

Theorem 4.5. If T ∈ Tn,k and T /∈ B, then there exists B ∈ B such that B � T in Tn,k .

Proof. Let (d1, d2, . . . , dn) be the degree sequence of T . Recall that ∆ (T ) ≥ 3 and assume
that T has a vertex of degree 2. Choose j > 1 such that dj = 2 and dj+1 = 1. Hence, by
Theorem 2.2, after applying operation II to the tree T we obtain a tree V1 ∈ Tn such that
Hf (V1) > Hf (T ). Since d1 = ∆ (T ) ≥ 3 and dj = 2, it is clear that V1 ∈ Tn,k. So repeating
this procedure as many times as necessary, we arrive at a tree Vr ∈ Tn,k without vertices of
degree 2, such that Vj = β (Vj−1) , for all 1 ≤ j ≤ r and

Hf (Vr) > · · · > Hf (V1) > Hf (V0) = Hf (T ) .

Since n2(Vr) = 0, the number of pendant vertices is n − k. Let (e1, e2, . . . , en) be the degree
sequence of Vr. If e2 = 3 then

e1 = 2(n− 1)− 3(k − 1)− (n− k) = n− 2k + 1,

and Vr ∈ B. If e2 ≥ 4 then choose j > 1 such that ej ≥ 4 and ej > ej+1. It follows from
Theorem 2.2 that the tree Vr+1 obtained from Vr by operation II satisfies Hf (Vr+1) > Hf (Vr).
Moreover, since ej ≥ 4 then Vr+1 ∈ Tn,k and has no vertices of degree 2. Repeating this
procedure as many times as necessary we arrive at a tree Vs ∈ Tn,k with degree sequence of the
form

(
a, 3, . . . , 3︸ ︷︷ ︸

k−1

, 1, . . . , 1︸ ︷︷ ︸
n−k

)
, where Vr+j = β (Vr+j−1) for all 1 ≤ j ≤ s− r and

Hf (Vs) > · · · > Hf (Vr+1) > Hf (Vr) > · · · > Hf (V1) > Hf (V0) = Hf (T ) .

Finally, since the sum of all degrees of Vs is equal to 2 (n− 1), we deduce that a = n− 2k + 1.
Hence, Vs ∈ B. �
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Example 4.6. In Table 2 we illustrate the sequences of trees given in Theorems 4.4 and 4.5.
Note that in each step we ‘move’ the maximal subtree at u which contains the vertex a, to the
vertex v.

The next result states the existence of a strictly monotone sequence of trees that reach
maximum and minimum trees with respect to the zeroth-order general Randić index in Tn,k.
This result implies a solution of the extremal problem solved in [12] with respect to the zeroth-
order Randić index over the class Tn,k.

Corollary 4.7. Let T ∈ Tn,k with n > 2k + 2.

1. If T /∈ A, then there exists A ∈ A such that T � A in Tn,k if α ∈ (−∞, 0)∪ (1,+∞) and,
A � T in Tn,k if α ∈ (0, 1).

2. If T /∈ B, then there exists B ∈ B such that B � T in Tn,k if α ∈ (−∞, 0)∪ (1,+∞) and,
T � B in Tn,k if α ∈ (0, 1).

5 Trees with fixed number of vertices and pendant vertices
Let us denote by T pn the set of trees on n vertices and p pendant vertices. If p = n − 1 then
T pn = {Sn}, and if p = 2, then T pn = {Pn}.

If p = 3 and T ∈ T 3
n , by (5), T has exactly one branching vertex of degree 3 and n2 = n− 4

vertices of degree 2. It means that any tree T ∈ T 3
n has degree sequence(

3, 2, . . . , 2︸ ︷︷ ︸
n−4

, 1, 1, 1
)

with Hf (T ) = f(3) + (n− 4)f(2) + 3f(1).
We assume throughout this section that 4 ≤ p ≤ n− 2. Let

C =

T ∈ T pn : T has degree sequence
(
a+ 1, . . . , a+ 1︸ ︷︷ ︸

r

, a, . . . , a︸ ︷︷ ︸
s

, 1, . . . , 1︸ ︷︷ ︸
p

) ,

where a = bn−2n−pc+ 1, r = n− 2− (n− p) bn−2n−pc, and s = (n− p) bn−2n−pc − p+ 2.

Theorem 5.1. Let T ∈ T pn such that T /∈ C. Then there exists C ∈ C such that T � C in T pn .

Proof. Let (d1, d2, . . . , dn) be the degree sequence of T . Let j such that dj ≥ 2 and dj+1 = 1.
Let i such that d1 = di > di+1. Note that i < j, otherwise, T = Sn which contradicts the
fact that p ≤ n − 2. If di − dj ≥ 2 then, by Theorem 2.2, there exists U1 = β (T ) ∈ T pn such
that Hf (U1) > Hf (T ). Assume that U1 has degree sequence (e1, e2, . . . , en). Let j such that
ej ≥ 2 and ej+1 = 1. Let i such that e1 = ei > ei+1. If ei − ej ≥ 2, then as before, there exists
U2 = β (U1) ∈ T pn such that Hf (U2) > Hf (U1). Repeating this process we arrive after a finite
number of steps to a tree Uk ∈ T pn such that

Hf (T ) > Hf (U1) > · · · > Hf (Uk) ,

where Uj = β (Uj−1), for all 1 ≤ j ≤ k, and Uk has degree sequence of the form(
a+ 1, . . . , a+ 1︸ ︷︷ ︸

r

, a, . . . , a︸ ︷︷ ︸
s

, 1, . . . , 1︸ ︷︷ ︸
p

)
.
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Table 2: Decreasing and increasing sequences of trees in T15,4 and T16,4, respectively.

Sequence in Theorem 4.4 Sequence in Theorem 4.5

a
u

v

U0

u

v

a

V0

v

u
a

U1

a u

v

V1

v

u

a

U2
a

u

v

V2

uv

a

U3

a

u v

V3

U4 V4
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From the relations
r + s+ p = n,

and
r (a+ 1) + sa+ p = 2 (n− 1) ,

it follows that a = bn−2n−pc + 1, r = n − 2 − (n− p) bn−2n−pc, and s = (n− p) bn−2n−pc − p + 2. In
particular, Uk ∈ C, so the proof is complete. �

Now consider the set

D =

T ∈ T pn : T has degree sequence
(
p, 2, . . . , 2︸ ︷︷ ︸

n−p−1

, 1, . . . , 1︸ ︷︷ ︸
p

) .

Theorem 5.2. Let T ∈ T pn and T /∈ D. Then there exists D ∈ D such that D � T in T pn .

Proof. Since p ≥ 4 then T 6= Pn, so ∆ (T ) ≥ 3.Assume that T has degree sequence (d1, d2, . . . , dn).
Choose j such that dj ≥ 3 but 1 ≤ dj+1 ≤ 2. If j = 1, then the degree sequence of T is of the
form

(
a, 2, . . . , 2︸ ︷︷ ︸

n−p−1

, 1, . . . , 1︸ ︷︷ ︸
p

)
. Then from the relation

a+ 2 (n− p− 1) + p = 2 (n− 1) ,

we deduce that a = p, which implies that T ∈ D, a contradiction. Hence j > 1. Now by
Theorem 2.2, after we apply operation II to the tree T we obtain a tree V1 ∈ T pn such that
Hf (V1) > Hf (T ) . Again ∆ (V1) ≥ 3. Then as before, either V1 ∈ D or there exists V2 ∈ T pn
such that Hf (V2) > Hf (V1) . Continuing this process, after a finite number of steps we arrive
at a tree Vs ∈ D such that

Hf (D) = Hf (Vs) > · · · > Hf (V1) > Hf (V0) = Hf (T ) .

�

Example 5.3. In Table 3 we illustrate the sequences of trees given in Theorems 5.1 and 5.2.
Note that in each step we ‘move’ the maximal subtree at u which contains the vertex a, to the
vertex v.

Next we provide a constructive solution to the problem of finding extremal trees in T ∈ T pn
with respect to 0Rα. This problem was originally solved by Khalid and Ali in [12].

Corollary 5.4. Let T ∈ T pn with 4 ≤ p ≤ n− 2.

1. If T /∈ C, then there exists C ∈ C such that T � C in T pn if α ∈ (−∞, 0) ∪ (1,+∞) and,
C � T in T pn if α ∈ (0, 1).

2. If T /∈ D, then there exists D ∈ D such that D � T in T pn if α ∈ (−∞, 0) ∪ (1,+∞) and,
T � D in T pn if α ∈ (0, 1).

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding
the publication of this article.
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Table 3: Decreasing and increasing sequences of trees in T 11
19 and T 10

15 , respectively.

Sequence in Theorem 5.1 Sequence in Theorem 5.2

v

u

a

U0

v u

a

V0

u

a

v

U1

u

a

v

V1

u

a

v

U2

u

a

v

V2

u

a v

U3

u
a

v

V3

U4 V4
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