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1 Introduction

Let G be a simple connected graph with vertex set V (G). The degree of a vertex u € V (G) will
be denoted by d,, = d,, (G). We say that the vertex u € V (G) is a branching vertex if d,, > 3,
while it is a pendant vertex if d, = 1. The vertex-degree function index Hy (G) is defined on

G as:

ueV(QG)
where f(x) is a function defined on positive real numbers [1]. For example, the first Zagreb
index M1 (G) = X, cv(q) d? is a special case when f (z) = 22 |2], the forgotten index F (G) =

> uev(c) d3 is a special case when f (z) = 2% [3]. More generally, the zeroth-order general
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Randi¢ index "R, (G) = > uev(c) du, where a ¢ {0,1} is a real number, is a particular case
when f (z) = 2 [4, 5]. For recent results on the degree function index of graphs we refer to
[6-9].

We are particularly interested in the vertex-degree function index over trees, i.e., connected
graphs with no cycles. Let T be a tree. A branch at v € V (T') is a maximal subtree containing
u as an end vertex. Hence, the number of branches at u is d,,. We say that tree U is obtained
from tree T' by a branching operation, denoted as U = §(T"), when U is obtained from T by
moving one branch of T at w € V (T') to another vertex v € V (T') (see Figure 1).

\‘.a/ ./ ::‘ \.a ./
S e e N
/’/ \’\ ) \./ — \‘\ v \0/
\ ...... / \ \ ...... / \

Figure 1: U is obtained from T by a branching operation.

Let us denote by T, the set of trees with n vertices and let F C 7T,,. We define the following
relation on F: if S, T € F we write S > T in F if and only if there exists a sequence {U; }521 CcF
such that Uy =S, U, =T, U; = f(Uj_1) for all 1 < j <k, and

Hy (S)=Hy(Uo) > Hy (U1) >+ > Hy (Ug) = Hy (T).

In this case we say that {Uj}f=1 is a strictly monotone sequence of trees.
Our main concern in this paper is to study the relation > in F on three significant classes:

1. F =17,, the set of trees with n vertices;
2. F =Ty, the set of trees with n vertices and k branching vertices;

3. F =7Tp, the set of trees with n vertices and p pendant vertices.

We will show that given a tree in JF, it is possible via branching operations to construct a
strictly monotone sequence of trees in F that reach the extremal values of Hy, when f (x + 1) —
f (z) is a strictly increasing function, a property satisfied by strictly convex functions. Examples
of such functions are f (x) = z%, when a > 0, which induce the general zeroth-order Randi¢
indices °R,. From this general approach, it is possible to deduce several well-known results on
the extremal value problem of Hy over the classes of trees mentioned above [10-12].

2 Variation of H; under branching operations on trees

If T € 7,, then the degree sequence of T is expressed in the form (di,ds,...,d,), where
dy > dy > --- > d, are the degrees of the vertices of T" in descending order. Note that
Yo di =2(n—1). Moreover, any non-increasing sequence (e1, e, ..., €,) of positive integers
such that Y  e; = 2(n — 1) is the degree sequence of some tree in 7y,.
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In this section we study the variation of H; when a special branching operation is applied
to a tree T. Let 4,5 € {1,...,n} such that

1 <j, di > dij41, dj—1 > d;, and d; > d; + 1. (1)
Consider Operation I:
(dl,...,di,...,dj,...,dn)W(dl,...,di—1,...,dj+1,...,dn), (2)

where only the positions 4, j are modified. By conditions given in (1), the sequence on the right
of (2) is non-increasing. In fact, the transformation given in (2) corresponds to a branching
operation on T, by moving a branch of T at vertex ¢ to the vertex j.

In the other direction, let j € {1,...,n} such that

7 >1 and dj > dj+1. (3)
Consider Operation II:
(dl,...,dj,...7dn) ~ (d1+1,...,dj 71,...,dn), (4)

where only the positions 1, j are modified. By condition (3), the sequence on the right of (4)
is non-increasing. The transformation given in (4) corresponds to a branching operation on T,
by moving a branch of T at vertex j to the vertex 1.

We will assume throughout this paper that f (z + 1) — f (z) is a strictly increasing function.
Clearly, every strictly convex function f (x) satisfies this property.

Example 2.1. Consider the function f(z) = 2 + |z]. Then f () is not convex since it is
discontinuous at each positive integer. However, f (x + 1)— f () = 2z+2 is a strictly increasing
function.

With our next result, we show that Hy is strictly monotone with respect to the operations
defined above.

Theorem 2.2. Let T be a tree with degree sequence (dy,da,...,d,).

1. Assume that i,j satisfy conditions given in (1). If U is the tree obtained from T by
operation I, then Hy (T') > Hy (U);

2. Assume that j satisfies condition (3). If V is the tree obtained from T by operation II,
then Hy (T) < Hy (V).

Proof. Let h(x) = f(z+1) — f (z).
1. If U is obtained from T by operation I, then it follows from (2) that

Hy(T)—Hy (U) = f(di)—f(di—1)+f(dj)— f(dj+1)
h(d; —1) — h(d;) > 0,

since d; > d; + 1 and h (z) is strictly increasing.
2. If V is obtained from T by operation II, then by (4),

Hy(T)—Hy (V) = f(di)—f(d+1)+f(dj)— f(dj—1)
= h(d;—1)—h(dy) <0,

since di > d; > d; — 1 and h () is strictly increasing.



4 R. Cruz et al. / A Study of Vertex-Degree Function Indices via Branching....

3 Trees with a fixed number of vertices

We first show that it is possible to reach the path P, from any tree T' # P,, by a sequence of
branching tree operations which have strictly decreasing value of Hy.

Theorem 3.1. If T €T, and T # P,, then T = P, in T,.

Proof. Let (dy,ds,...,dy,) be the degree sequence of T'. Since T # P, then A (T) > 3. Choose
i such that d; = A and d;+1 < A. On the other hand, choose j such that d; =1 and d;_; > 1.
Then d; > 3 > 2 = d;+1. Consequently, ¢ < j satisfy conditions given in (1), so by Theorem 2.2,
after we apply operation I to T we obtain a tree Uy € 7, such that Hy (T') > Hy (Uy). If Uy = P,
we are done. Otherwise, we repeat the previous argument to construct a tree Uy € T, such
that Hy (Uy) > Hy (Us) . Eventually, after a finite number of steps we arrive at U = P,,, where
Uj=p5(Uj_q) forall1 <j<kand

Hy (T) = Hy (Uo) > Hy (Ur) > Hy (Uz) > -+ > Hy (Uy) = Hy () .
]

In the other direction, we can obtain the star .S, from any tree T # S,,, by a sequence of
trees which have strictly increasing value of Hy.

Theorem 3.2. If T €T, and T # S, then S,, =T inT,.

Proof. Since T' # S,,, the degree sequence of T" has the form (di,...,d;,1,...,1), where j > 1
satisfies d1 > d; > 1 = d;41. Hence, j satisfies condition (3), so by Theorem 2.2, after applying
operation II to the tree T we obtain a tree Vi € T, such that H; (V1) > H; (T). If V1 = S,
we are done. Otherwise, we repeat the previous argument to construct a tree Vo € 7, such
that Hy (Vo) > Hy (V7). After a finite number of steps we arrive at a tree Vi, € 7, such that
Vi = Sy, where V; = 5 (V) forall 1 < j <k, and

Hy(Sn) = Hy (Vi) >---> Hy (Vo) > Hy (Vi) > Hy (Vo) = Hy (T) .
]

Example 3.3. In Table 1 we illustrate the sequences of trees given in Theorems 3.1 and 3.2.
Note that in each step we ‘move’ the maximal subtree at 4 which contains the vertex a, to the
vertex v.

Remark 1. Note that Theorems 3.1 and 3.2 are stronger results than [10, Theorems 4 and
8], since they not only present the extremal trees, but also state the existence of a strictly
monotone sequence of trees that reach extreme values of Hy, starting from any tree in 7p,.

Recall that the zeroth-order general Randi¢ index is defined as R, (T) = H(G) where
f(z) = z°. In the next result, we affirm that from any tree in 7, it is possible to construct a
strictly monotone sequence of trees that reach maximum and minimum trees with respect to
the zeroth-order general Randi¢ index, a result obtained in [11].

Corollary 3.4. Let T € T,.
1. IfT # P, thenT > P, in T, if a« € (—00,0) U (1,400) and, P, =T in T, if a € (0,1).
2. If T #S,, then S, = T in Ty, if a« € (—00,0) U (1,400) and, T > S, in T, if a« € (0,1).

Proof. For a € (—00,0) U (1,+00) it holds that f(x 4+ 1) — f(x) is strictly increasing function.
Statements 1 and 2 follow from Theorems 3.1 and 3.2, respectively.

On the other hand, since f(z + 1) — f(x) is strictly decreasing function if o € (0,1), we
apply Theorems 3.1 and 3.2 to H#(G) with f(z) = —a°. ]
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4 Trees with fixed number of vertices and branching ver-
tices

Let us denote by 7, i the set of trees with n vertices and k branching vertices.

Lemma 4.1. The set Ty 1 is nonempty if and only if n > 2k + 2. If n = 2k + 2, then any tree
T € Tokyo,r has degree sequence (3, R T AU | )
—_—— ——

k k+2

Proof. Recall that if a tree T € 7, has p pendant vertices and X is the set of branching
vertices, then

p—2=) (d—2)>k (5)

vEX

If ny is the number of vertices of degree 2 in T, then using (5) we have:
n=k+no+p>2k+no+2>2k+2. (6)
On the other hand, from (6),

0<ny,<n-2k-—2.

If n = 2k + 2, then for any tree T € Taogyo.k, N2 = 0 and p = k + 2. From (5)

k=Y (dy,—2),

vEX

which implies that d, = 3 for each v € X. Then, any tree T € Tar42, has degree sequence
(3,...,3,1,‘..,1). [ |
—— ——

k k+2

Example 4.2. The trees in Figure 2 belong to Togt2..

NSNS NS
SN LN \

Figure 2: Trees in Togy2 k-

In what follows in this section we consider the set 7, with n > 2k 4+ 2. We shall see that
the trees in

A= TeTn’k:Thasdegreesequence(?),...,3,2,...,271,...71) ,
—_—— —— ——
k n—2k—2 k42

have the minimal value of Hy among all trees in 7, .

Lemma 4.3. Let A€ T, . Then A € A if and only if A (A) = 3.
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Table 1: Decreasing and increasing sequences of trees in 71;.

Sequence in Theorem 3.1

Sequence in Theorem 3.2
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Proof. Clearly, A € A implies A (A) = 3. Conversely, assume that A € 7, and A (A) = 3.
Then the degree sequence of A is of the form (37 e 3,2,0..0,2,1, 0., 1). By relation (5),
—_——— —— ——

k m 4
p =k +2, and since k +m + p = n, we deduce that m = n — 2k — 2. Consequently, A € A. B

Theorem 4.4. If T € T, and T ¢ A, then there exists A € A such that T = A in Ty .

Proof. Let (dq,da,...,d,) be the degree sequence of T. Since T' € T, and T ¢ A, then by
Lemma 4.3, A > 4. Let 4 such that d; = A > d;41, and j > 1 such that d; =1 but d;_; > 1.
Note that d; > 4 > 2 = d; + 1. Hence conditions given in (1) hold and so by Theorem 2.2, after
applying operation I to the tree T we find a tree Uy € 7T, such that Hy (T') > Hy (Uy). Note
that since d; > 4and d; = 1in T, then U; € T, . If U1 € A then we are done. Otherwise, using
a similar argument as before, we construct a tree Us € Ty, 1, such that Hy (Us) > Hy (Uy). After
a finite number of steps we arrive at a tree Uy € Ty, such that U; = A€ A, U; = 8(U;_4) for
allj=1,...,s and

Hy(T) = Hy (Uo) > Hy (Ur) > --- > Hy (Us) = Hy (A)..

Now we consider the set

B= T & Tpr: T has degree sequence (n—2k—|—1,3,...,3,1,...,1)
——— N——
k—1 n—k

Theorem 4.5. If T € T, and T ¢ B, then there exists B € B such that B >~ T in Ty -

Proof. Let (di,da,...,d,) be the degree sequence of T. Recall that A (T) > 3 and assume
that 7" has a vertex of degree 2. Choose j > 1 such that d; = 2 and d;11 = 1. Hence, by
Theorem 2.2, after applying operation II to the tree T' we obtain a tree V; € 7T, such that
Hy (Vi) > Hy (T). Since dy = A(T) > 3 and d; = 2, it is clear that Vi € T, 1. So repeating
this procedure as many times as necessary, we arrive at a tree V;. € T, ) without vertices of
degree 2, such that V; = 8 (V;_1), for all 1 < j <r and

Hy (Vi) >--->Hp (Vi) > Hy (Vo) = Hy (T).

Since na(V,) = 0, the number of pendant vertices is n — k. Let (e1,ea,...,e,) be the degree
sequence of V.. If e; = 3 then

e1=2n—-1)=-3k—-1)—(n—k)=n—-2k+1,

and V, € B. If e > 4 then choose j > 1 such that e; > 4 and e; > e;41. It follows from
Theorem 2.2 that the tree V,..1 obtained from V,. by operation II satisfies Hy (V,1) > Hy (V;.).
Moreover, since e; > 4 then V.41 € 7T, and has no vertices of degree 2. Repeating this
procedure as many times as necessary we arrive at a tree Vs € 7, ;, with degree sequence of the
form (a,3, 3,1 1), where V1 ; = 3 (Vy4,-1) forall 1 < j <s—r and

—— ——

k—1 n—k
f{f(‘g):> "'>>f¥f(vﬁ+4) >'f¥f(‘6) > e >-}{f(Lﬁ) >'f{f(vﬁ) :ifff(jv.

Finally, since the sum of all degrees of V; is equal to 2 (n — 1), we deduce that a =n — 2k + 1.
Hence, V; € B. |
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Example 4.6. In Table 2 we illustrate the sequences of trees given in Theorems 4.4 and 4.5.
Note that in each step we ‘move’ the maximal subtree at u which contains the vertex a, to the
vertex v.

The next result states the existence of a strictly monotone sequence of trees that reach
maximum and minimum trees with respect to the zeroth-order general Randi¢ index in 7y k.
This result implies a solution of the extremal problem solved in [12] with respect to the zeroth-
order Randié¢ index over the class 7Ty, k.

Corollary 4.7. Let T € T, with n > 2k + 2.

1. If T ¢ A, then there exists A € A such that T = A in Ty, 1 if o € (—00,0) U (1, +00) and,
A>T inTpk if a € (0,1).

2. If T ¢ B, then there exists B € B such that B =T in T, 1 if o € (—00,0) U (1, +00) and,
T>BinTyr if a€(0,1).

5 Trees with fixed number of vertices and pendant vertices

Let us denote by 7P the set of trees on n vertices and p pendant vertices. If p = n — 1 then
TP ={S,}, and if p =2, then TP = {P,}.

Ifp=3and T € T2, by (5), T has exactly one branching vertex of degree 3 and ny =n —4
vertices of degree 2. It means that any tree T' € 7,2 has degree sequence

(3,2,...,2,1,1,1)
N—_——
n—4

with Hy(T) = f(3) + (n — 4)£(2) + 3£(1).
We assume throughout this section that 4 <p <n — 2. Let

C= TE'Ef:Thasdegreesequence(a—|—1,...,a+1,a,...,a,17...,1) ,
—_———— — — —
T s P
Wherea:LZ—:?}J+1,r:n—2—(n—p)LZ—:§j,ands:(n—p)LZ—:IQ)j—p+2.
Theorem 5.1. Let T € TP such that T ¢ C. Then there exists C' € C such that T > C in TP.

Proof. Let (d1,ds,...,d,) be the degree sequence of T'. Let j such that d; > 2 and dj;1 = 1.
Let ¢ such that d; = d; > d;11. Note that i < j, otherwise, T = S,, which contradicts the
fact that p < n — 2. If d; — d; > 2 then, by Theorem 2.2, there exists Uy = §(T') € T? such
that Hy (Uy) > Hy (T). Assume that U; has degree sequence (e, es,...,e,). Let j such that
e; > 2 and ej1 = 1. Let ¢ such that e; = e; > e;41. If e; — e; > 2, then as before, there exists
Uy = B (Ur) € TP such that Hy (Us) > Hy (Ur). Repeating this process we arrive after a finite
number of steps to a tree U, € TP such that

Hy (T) > Hy (Uy) > -+ > Hy (Uy),
where U; = 8 (U;j_1), for all 1 < j <k, and U}, has degree sequence of the form

(a+L...,a—i—La,...,a,l,...,l).
—_—

T S P
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Table 2: Decreasing and increasing sequences of trees in 7q5 4 and 716 4, respectively.

Sequence in Theorem 4.5

Sequence in Theorem 4.4
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From the relations
r+s+p=n,

and
r(a+1l)+sa+p=2(n—-1),

it follows that a = L%J +1L,r=n—-2-(n—-p) LZ—:?)J, and s = (n —p) LZ—:;j —p+2.In
particular, Uy € C, so the proof is complete. |

Now consider the set
D =T e 7pP: T has degree sequence ( ,2,...,2,1,...,1)
——

Theorem 5.2. Let T € TP and T ¢ D. Then there exists D € D such that D > T in TP.

Proof. Sincep > 4thenT # P,, so A (T) > 3. Assume that T" has degree sequence (dy, da, ..., dy).
Choose j such that d; > 3 but 1 <dj;q < 2. If 5 =1, then the degree sequence of 7' is of the

form (a, 2,...,2,1,...,1 ) Then from the relation
—— ——
n—p—1 p

at2(n—p-1)+p=2(n-1),

we deduce that a = p, which implies that T" € D, a contradiction. Hence 7 > 1. Now by
Theorem 2.2, after we apply operation II to the tree T we obtain a tree V4 € TP such that
H; (Vi) > Hy (T). Again A (V1) > 3. Then as before, either V4 € D or there exists Vo € 7,7
such that Hy (Vo) > Hy (V7). Continuing this process, after a finite number of steps we arrive
at a tree Vi € D such that

Hy (D)= Hy(Vs) >--->Hp (Vi) > Hy (Vo) = Hy (T).
|

Example 5.3. In Table 3 we illustrate the sequences of trees given in Theorems 5.1 and 5.2.
Note that in each step we ‘move’ the maximal subtree at u which contains the vertex a, to the
vertex v.

Next we provide a constructive solution to the problem of finding extremal trees in 7" € 7P
with respect to °R,,. This problem was originally solved by Khalid and Ali in [12].

Corollary 5.4. LetT € TP with4 <p<n-—2.

1. If T ¢ C, then there ezists C € C such that T = C in T? if o € (—00,0) U (1, +00) and,
C>TinT? ifae (0,1).

2. If T ¢ D, then there exists D € D such that D =T in T? if a € (—00,0) U (1, +00) and,
T+DinT? ifac(0,1).

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding
the publication of this article.
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Sequence in Theorem 5.2

Sequence in Theorem 5.1

Table 3: Decreasing and increasing sequences of trees in 75 and T30, respectively.

Iranian Journal of Mathematical Chemistry 16 (1) (2025) 1 — 12

° 02
o—l—l/—g—o—o—o
/
e e—e—o
U1

°

_

°

_
Al
N _-®
e
o9
-
u_ 3
°®
1
Y J )
| |
—eo—o
| |
—e o
1=,
Nes
B
o—eo—eo

Us

A
o\\ﬂ/Ao =
( W J




12

R. Cruz et al. / A Study of Vertex-Degree Function Indices via Branching....

References

(1]

2]

13

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

Y. Yao, M. Liu, F. Belardo and C. Yang, Unified extremal results of topological in-
dices and spectral invariants of graphs, Discrete Appl. Math. 271 (2019) 218-232,
https://doi.org/10.1016/j.dam.2019.06.005.

I. Gutman and N. Trinajsti¢, Graph theory and molecular orbitals. Total -
electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538,
https://doi.org/10.1016,/0009-2614(72)85099-1.

B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184—
1190, https://doi.org/10.1007/s10910-015-0480-z.

X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH
Commun. Math. Comput. Chem. 54 (2005) 195-208.

X. Li and Y. Shi, (n,m)-graphs with maximum zeroth-order general Randi¢ index for
a € (—1,0), MATCH Commun. Math. Comput. Chem. 62 (2009) 163-170.

S. Bermudo, R. Cruz and J. Rada, Vertex-degree function index on tournaments, Commaun.
Comb. Optim. 10 (2025) 443-452.

I. Tomescu, Properties of connected (n,m)-graphs extremal relatively to vertex degree
function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021)
285-294.

I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree
function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022)
109-114, https://doi.org/10.46793 /match.87-1.109T.

I. Tomescu, Extremal vertex-degree function index for trees and unicyclic graphs
with given independence number, Discrete Appl. Math. 306 (2022) 83-88,
https://doi.org/10.1016 /j.dam.2021.09.028.

D. He, Z. Ji, C. Yang and K. C. Das, Extremal graphs to vertex degree function index for
convex functions, Azioms 12 (2023) #31, https://doi.org/10.3390/axioms12010031.

X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological
indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.

S. Khalid and A. Ali, On the zeroth-order general Randic index, variable sum exdeg index
and trees having vertices with prescribed degree, Discrete Math. Algorithms Appl. 10
(2018) #1850015, https://doi.org/10.1142/S1793830918500155.



	Introduction
	Variation of Hf under branching operations on trees
	Trees with a fixed number of vertices
	Trees with fixed number of vertices and branching vertices
	Trees with fixed number of vertices and pendant vertices

