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Abstract

Let G be a molecular graph, where du representes the degree
of vertex u, and uv denotes an edge connecting vertices u and
v. A few years ago, a new vertex-degree-based graph invari-
ant (topological index) was introduced by Gutman, defined as
SO(G) =

∑
uv∈E

√
d2u + d2v, called the Sombor index. Recently,

Kulli et al. compared several modified versions of Sombor in-
dex (Nirmala, Sombor, Dharwad, and F -Sombor indices), they
found that these indices are highly correlated and their values
for QSPR applications are nearly the same. Based on this study
Kulli et al. introduced a new vertex-degree-based topological in-
dex, which is defined as X(G) =

∑
uv∈E

√
dku + dkv , where k ≥ 1

is a real number. In this paper, we determine the extremal
chemical trees with respect to X index.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction
In chemistry, the mathematical apparatus of graph theory is applied for modeling chemical phe-
nomena, usually the relations between molecular structure and the physicochemical properties
of the underlying chemical compounds.

Let G be a graph with vertex set V and edge set E. By uv ∈ E we denote the edge of G,
connecting the vertices u and v. The degree of the vertex u in G is denoted by du. A few years
ago, Gutman [1] defined a new vertex-degree-based graph invariant, named "Sombor index" of
a graph G, denoted by SO(G), defined as:

SO(G) =
∑
uv∈E

√
d2u + d2v.
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The mathematical properties and the various applications of the Sombor index and its modified
versions can be found in the recent articles [2–9] and cited therein.

The bond incident degree (BID) index for a graph G is defined as the total of contributions
f(du, dv) from all edges uv of G, where f is a real-valued symmetric function. For example, if
take f(du, dv) =

√
d2u + d2v then we obtain the Sombor index. Albalahi et al. [10] studied the

problem of finding graphs with extremum BID indices over the class of all chemical graphs of
a fixed number of edges and vertices.

Kulli et al. [11] compared several modified versions of the Sombor index. They found that
these indices are highly correlated and their value for QSPR applications is nearly the same.
Based on this study, Kulli et al. [11] considered a new vertex-degree-based topological index

X(G) =
∑
uv∈E

√
dku + dkv ,

where k ≥ 1 is a real number. For k = 1, 2, 3 and 4, X gives Nirmala [12, 13], Sombor, Dharwad,
and F-Sombor [14] indices, respectively.

In this paper, we determine the extremal chemical trees with respect to X index.

2 Main results
In [11], it was proved that X(T ) ≥ X(Pn) for any tree T of order n. Therefore, we study the
extremal chemical trees with maximum X index. For n = 3s + 2 with s ≥ 1, CT n is the class
of chemical trees of order n such that every degree of vertices is one or four. For n = 3s with
s ≥ 3, CT n is the class of chemical trees of order n such that only one vertex has degree two
and its neighbors have degree four, and other vertices have degree one or four. For n = 3s + 1
with s ≥ 4, CT n is the class of chemical trees of order n such that only one vertex has degree
three and its neighbors have degree four, and other vertices have degree one or four.

If n ≤ 3 then there is only one tree of order n. For n = 4, we have

X(P4) = 2
√

1 + 2k +
√

2k+1 < 3
√

1 + 3k = X(S4).

Thus, let T be a chemical tree of order n ≥ 5 and vi (i = 1, 2, 3, 4) be the number of vertices of
degree i in T . Also let ei,j (1 ≤ i ≤ j ≤ 4) be the number of edges of T connecting vertices of
degree i and j. Then e1,1 = 0 and

v1 + v2 + v3 + v4 = n, v1 + 2v2 + 3v3 + 4v4 = 2(n− 1),

e1,2 + e1,3 + e1,4 + e2,2 + e2,3 + e2,4 + e3,3 + e3,4 + e4,4 = n− 1,

e1,2 + e1,3 + e1,4 = v1, e1,4 + e2,4 + e3,4 + 2e4,4 = 4v4, (1)
e1,2 + 2e2,2 + e2,3 + e2,4 = 2v2, e1,3 + e2,3 + 2e3,3 + e3,4 = 3v3.

Lemma 2.1. Let T be a chemical tree of order n. If X(T ) is the maximum among all chemical
trees of order n, then e2,2 = e2,3 = e3,3 = 0.

Proof. First, suppose that e2,2 6= 0. Then there are adjacent vertices u and v in T such that
du = dv = 2. Let NT (u) = {v, x} and NT (v) = {u, y}. Denote T1 = T − vy + uy. Then we get

X(T1)−X(T ) =
√

3k + dkx +
√

3k + dky +
√

3k + 1

−
√

2k + dkx −
√

2k + dky −
√

2k + 2k > 0,
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using 3k + 1 ≥ 2k + 2k for all k ≥ 1. Because the function f(t) = (t + 1)k − tk is increasing
when k ≥ 1. This is a contradiction.

Suppose now that e2,3 6= 0. Then there are adjacent vertices u and v in T such that dv = 2
and du = 3. Let NT (u) = {v, x, y} and NT (v) = {u, z}. Denote T1 = T − vz + uz. Then

X(T1)−X(T ) =
√

4k + dkx +
√

4k + dky +
√

4k + dkz +
√

4k + 1

−
√

3k + dkx −
√

3k + dky −
√

2k + dkz −
√

3k + 2k > 0,

using 4k + 1 ≥ 3k + 2k for all k ≥ 1. This is a contradiction.
Finally, suppose that e3,3 6= 0. Then there are adjacent vertices u and v in T such that

dv = du = 3. Let NT (u) = {v, x, y} and NT (v) = {u, z, w}. Without loss of generality, we can
assume that dx = max{dx, dy, dz, dw}. Denote T1 = T − uy + vy. Then

X(T1)−X(T ) =
√

4k + dkz +
√

4k + dkw +
√

4k + dky +
√

2k + dkx +
√

4k + 2k

−
√

3k + dkz −
√

3k + dkw −
√

3k + dky −
√

3k + dkx −
√

3k + 3k.

In order to get the inequality X(T1) > X(T ), it will be enough to show that√
4k + dky +

1

3

√
2k + dkx >

√
3k + dky +

1

3

√
3k + dkx. (2)

Because 4k +2k ≥ 3k +3k for all k ≥ 1. Then we get a contradiction and it follows that e3,3 = 0.
Hence, we now will prove the inequality (2) and it is equivalent to

3
(√

4k + dky −
√

3k + dky

)
>
√

3k + dkx −
√

2k + dkx.

On the other, it is easy to see that
√

4k + dky −
√

3k + dky ≥
√

4k + dkx −
√

3k + dkx, because
dx ≥ dy. Therefore, we have to prove that:

3

(√
4k + dkx −

√
3k + dkx

)
>
√

3k + dkx −
√

2k + dkx,

that is,

3
√

4k + dkx +
√

2k + dkx > 4
√

3k + dkx.

Therefore, the proof is completed by showing that(
3
√

4k + dkx +
√

2k + dkx

)2

> 9 · 4k + 9dkx + 2k + dkx + 6

√
(2k + dkx)

2

= 9 · 4k + 7 · 2k + 16dkx > 16 · 3k + 16dkx =

(
4
√

3k + dkx

)2

,

since 4k + 2k ≥ 3k + 3k for all k ≥ 1. �

If n = 6 or n = 7 or n = 10 then one can easily see that CT n = ∅. For n = 6, n = 7 or
n = 10, we denote by Tn the graph depicted in Figure 1, respectively.
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T6 T7 T10

Figure 1: The graphs T6, T7 and T10 for n = 6, 7, 10.

Lemma 2.2. Let T be a chemical tree of order n, where n ∈ {6, 7, 10}. If X(T ) is the maximum
among all chemical trees of order n, then T ∼= Tn.

Proof. By Lemma 2.1, we have e2,2 = e2,3 = e3,3 = 0. If v4 = 0 then we have e1,2 = 2v2,
e1,3 = 3v3, e1,2 +e1,3 = v1 and v1 +2v2 +3v3 = 2(n−1) from (1) and it follows that v1 = n−1.
Hence, T ∼= Sn and a contradiction since ∆(T ) = n−1 ≥ 5. Therefore, we have v4 ≥ 1. Clearly,
if n = 6 or n = 7 then v4 ≤ 1, and if n = 10 then v4 ≤ 2.

Let n = 6 or n = 7. Then v4 = 1 and from (1), we get a system of equations: v1 + v2 + v3 =
n− 1, v1 + 2v2 + 3v3 = 2n− 6. For n = 6, it has only one solution that is v1 = 4, v2 = 1, v3 = 0
and it follows that T ∼= T6. For n = 7, it has two solutions which are (v1, v2, v3) = (5, 0, 1) or
(4, 2, 0). Hence T ∈ {T7, T

′
7}, where T ′7 is the obtained graph from P5 by attaching two pendent

vertices to the central vertex of P5. Moreover, we have

X(T7) = 2
√

1 + 3k +
√

3k + 4k + 3
√

1 + 4k,

X(T ′7) = 2
√

1 + 2k + 2
√

2k + 4k + 2
√

1 + 4k.

In order to get the required result, it is sufficient to prove X(T7) > X(T ′7). Then

2
√

1 + 3k +
√

3k + 4k +
√

1 + 4k > 2
√

1 + 2k + 2
√

2k + 4k,

that is,

1 + 5 · 3k + 4
√

(1 + 3k)(3k + 4k) + 4
√

(1 + 3k)(1 + 4k) + 2
√

(3k + 4k)(1 + 4k)

> 8 · 2k + 2 · 4k + 8
√

(1 + 2k)(2k + 4k).

The above inequality is true, because (1+3k)(1+4k) > (1+2k)(2k +4k),
√

(3k + 4k)(1 + 4k) >
4k and 1 + 5 · 3k ≥ 8 · 2k for k ≥ 1.

Let n = 10. Then v4 = 1 or v4 = 2. If v4 = 2 then v1 + v2 + v3 = 8, v1 + 2v2 + 3v3 = 10
from (1) and it has two solutions that are (v1, v2, v3) = (7, 0, 1) or (6, 2, 0). By Lemma 2.1, we
have e2,2 = e2,3 = e3,3 = 0. Hence, all possible values of X(T ) are as follows:

2
√

3k + 4k + 6
√

1 + 4k +
√

1 + 3k,√
4k + 4k +

√
3k + 4k + 5

√
1 + 4k + 2

√
1 + 3k,√

4k + 4k + 2
√

2k + 4k + 4
√

1 + 4k + 2
√

1 + 2k,

3
√

2k + 4k + 5
√

1 + 4k +
√

1 + 2k.
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and we will show that 2
√

3k + 4k + 6
√

1 + 4k +
√

1 + 3k is maximum.
Using well-known Karamata’s inequality, one can easily see that

3
√

2k + 4k + 5
√

1 + 4k +
√

1 + 2k >
√

4k + 4k + 2
√

2k + 4k + 4
√

1 + 4k + 2
√

1 + 2k,

since (4k +4k, 2k +4k, 2k +4k, 1+4k, 1+4k, 1+4k, 1+4k, 1+2k, 1+2k) majorizes (2k +4k, 2k +
4k, 2k + 4k, 1 + 4k, 1 + 4k, 1 + 4k, 1 + 4k, 1 + 4k, 1 + 2k) and f(t) =

√
t is concave. Similarly as

the above, we have

2
√

3k + 4k + 6
√

1 + 4k +
√

1 + 3k >
√

4k + 4k +
√

3k + 4k + 5
√

1 + 4k + 2
√

1 + 3k.

Now we show that:

2
√

3k + 4k + 6
√

1 + 4k +
√

1 + 3k > 3
√

2k + 4k + 5
√

1 + 4k +
√

1 + 2k.

It is enough to prove that:

2
√

3k + 4k +
√

1 + 4k > 3
√

2k + 4k,

that is,

4
√

3k + 4k + 12k + 16k > 9 · 2k + 4 · 4k − 4 · 3k − 1.

Using 4 · 3k ≥ 6 · 2k and 16 · 12k ≥ 24 · 8k, we have

9 · 2k + 4 · 4k − 4 · 3k − 1 < 4 · 4k + 3 · 2k =
√

16 · 16k + 24 · 8k + 9 · 4k

<
√

16 · 16k + 16 · 12k + 16 · 4k < 4
√

3k + 4k + 12k + 16k.

From the above, we conclude that X(T ) = 2
√

3k + 4k + 6
√

1 + 4k +
√

1 + 3k. Hence T ∼= T10.
If v4 = 1 then v1 + v2 + v3 = 9, v1 + 2v2 + 3v3 = 14 and it has three solutions that are

(v1, v2, v3) = (6, 1, 2) or (5, 3, 1) or (4, 5, 0). By Lemma 2.1, we have e2,2 = e2,3 = e3,3 = 0.
Hence, all possible values of X(T ) are as follows:

2
√

3k + 4k +
√

1 + 4k +
√

2k + 4k + 4
√

1 + 3k +
√

1 + 2k,√
3k + 4k + 3

√
2k + 4k + 2

√
1 + 3k + 3

√
1 + 2k.

First we show that:

2
√

3k + 4k + 6
√

1 + 4k +
√

1 + 3k >
√

3k + 4k + 3
√

2k + 4k + 2
√

1 + 3k + 3
√

1 + 2k.

It is enough to prove that:√
3k + 4k + 5

√
1 + 4k > 3

√
2k + 4k + 3

√
1 + 2k.

By squaring both sides, we get:

A = 17 · 4k + 3k + 16 + 10
√

3k + 4k + 12k + 16k > 18 · 2k + 18
√

2k + 2 · 4k + 8k.

Since 9 · 4k ≥ 18 · 2k, 8 · 4k + 3k = 8
√

16k + 3k > 8
√

2 · 8k +
√

8k > 12
√

8k, we get

A > 18 · 2k + 12
√

8k + 10
√

0 + 0 + 12/8 · 8k + 16/8 · 8k > 18 · 2k + 27
√

8k

= 18 · 2k + 18

√
1

4
· 8k + 2 · 1

2
· 8k + 8k ≥ 18 · 2k + 18

√
2k + 2 · 4k + 8k.
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To finish the proof, we have to prove that:

X(T10) > 2
√

3k + 4k +
√

1 + 4k +
√

2k + 4k + 4
√

1 + 3k +
√

1 + 2k,

that is,

5
√

1 + 4k >
√

2k + 4k + 3
√

1 + 3k +
√

1 + 2k. (3)

On the other hand, one can easily see that
√

3/2(1 + 4k) >
√

2k + 4k,
√

3/5(1 + 4k) ≥
√

1 + 2k

and
√

3/2 +
√

3/5 < 2. Using these inequalities in (3), we get the required result. �

Theorem 2.3. Let T be a chemical tree of order n > 4, where n /∈ {6, 7, 10}. If X(T ) is the
maximum among all chemical trees of order n then T ∈ CT n.

Proof. By Lemma 2.1, we have e2,2 = e2,3 = e3,3 = 0. Hence, from (1), we get

v1 + v2 + v3 + v4 = n,

e1,2 + e1,3 + e1,4 + e2,4 + e3,4 + e4,4 = n− 1,

e1,2 + e1,3 + e1,4 = v1, e1,2 + e2,4 = 2v2,

e1,3 + e3,4 = 3v3, e1,4 + e2,4 + e3,4 + 2e4,4 = 4v4.

From the above, we easily get the following equations:

n =
3

2
e1,2 +

4

3
e1,3 +

5

4
e1,4 +

3

4
e2,4 +

7

12
e3,4 +

1

2
e4,4,

e1,4 =
2

3
(n + 1)− 2

3

(
2e1,2 +

5

3
e1,3 +

1

2
e2,4 +

1

6
e3,4

)
,

e4,4 =
1

3
(n− 5) +

1

3
e1,2 +

1

9
e1,3 −

2

3
e2,4 −

8

9
e3,4. (4)

Then, using (4), we obtain:

X(T ) =
∑
uv∈E

√
dku + dkv =

∑
1≤i≤j≤4

[√
ik + jk

]
· ei,j

=
2

3
(n + 1)

√
1 + 4k +

n− 5

3
· 2k
√

2− e1,2

(
4

3

√
1 + 4k − 1

3
· 2k
√

2−
√

1 + 2k
)

− e1,3

(
10

9

√
1 + 4k − 2k

√
2

9
−
√

1 + 3k

)

− e2,4

(
1

3

√
1 + 4k +

2k+1
√

2

3
−
√

2k + 4k

)
(5)

− e3,4

(
1

9

√
1 + 4k +

8 · 2k
√

2

9
−
√

3k + 4k

)

=
2

3
(n + 1)

√
1 + 4k +

n− 5

3
· 2k
√

2− c12e1,2 − c13e1,3 − c24e2,4 − c34e3,4,

where c12 = 4
3

√
1 + 4k − 1

3 · 2
k
√

2−
√

1 + 2k, c13 = 10
9

√
1 + 4k − 2k

√
2

9 −
√

1 + 3k,
c24 = 1

3

√
1 + 4k + 2k+1

√
2

3 −
√

2k + 4k, and c34 = 1
9

√
1 + 4k + 8·2k

√
2

9 −
√

3k + 4k.
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First we prove that:

c12 > c24 > 0 and c13 > c34 > 0. (6)

By Karamata’s inequality, we have

c12 − c24 =
√

1 + 4k +
√

2k + 4k − 2k
√

2−
√

1 + 2k > 0,

since (4k + 4k, 1 + 2k) majorizes (4k + 2k, 4k + 1) and f(t) =
√
t is concave. Also by Karamata’s

inequality, we have

c13 − c34 =
√

1 + 4k +
√

3k + 4k − 2k
√

2−
√

1 + 3k > 0,

since (4k + 4k, 1 + 3k) majorizes (4k + 3k, 4k + 1). Now we show that c24 > 0 and c34 > 0. Then

c24 =
1

3

√
1 + 4k +

2k+1
√

2

3
−
√

2k + 4k =
2k

3

(√
1 +

1

4k
+ 2
√

2− 3

√
1 +

1

2k

)

>
2k

3

(
1 + 2

√
2− 3

√
1 +

1

2

)
> 0.

c34 =
1

9

√
1 + 4k +

8 · 2k
√

2

9
−
√

3k + 4k =
2k

9

(√
1 +

1

4k
+ 8
√

2− 9

√
1 +

3k

4k

)

>
2k

9

(
1 + 8

√
2− 9

√
1 +

3

4

)
> 0.

We distinguish the following three cases.

(i) Let n = 3s + 2, s ≥ 1. Then from (5) and (6), we obtain

X(T ) ≤ 2

3
(n + 1)

√
1 + 4k +

n− 5

3
· 2k
√

2,

with equality holding if and only if

e1,2 = e1,3 = e2,2 = e2,3 = e2,4 = e3,3 = e3,4 = 0.

Hence we get v1 = e1,4 = 2(n+ 1)/3 and e4,4 = (n− 5)/3. Also we have v2 = v3 = 0. Therefore
T ∈ CT n.

(ii) Let n = 3s, s ≥ 3. Then v2 6= 0 or v3 6= 0. If v2 ≥ 1 then

e1,2 + e2,4 = 2v2 ≥ 2,

from (1). Therefore, we get

X(T ) ≤2

3
(n + 1)

√
1 + 4k +

n− 5

3
· 2k
√

2− c24(e1,2 + e2,4)

≤2

3
(n + 1)

√
1 + 4k +

n− 5

3
· 2k
√

2− 2c24

=
2n

3

√
1 + 4k +

n− 9

3
· 2k
√

2 + 2
√

2k + 4k, (7)
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since c12 > c24 and c13 > c34 > 0.
If v2 = 0 then we have v1 + v3 + v4 = n and v1 + 3v3 + 4v4 = 2(n− 1). Thus, since n = 3s

we easily get v3 ≥ 2. Therefore, we have:

e1,3 + e3,4 = 3v3 ≥ 6,

from (1). Hence, we obtain:

X(T ) ≤2

3
(n + 1)

√
1 + 4k +

n− 5

3
· 2k
√

2− c34(e1,3 + e3,4)

≤2

3
(n + 1)

√
1 + 4k +

n− 5

3
· 2k
√

2− 6c34

=
2n

3

√
1 + 4k +

n− 21

3
· 2k
√

2 + 6
√

3k + 4k, (8)

since c12 > c24 > 0 and c13 > c34. From (7) and (8), we get the required result because
6c34 > 2c24 which is equivalent to 4

√
2 (16k + 8k)+2k > 9·3k. Moreover, by AM-GM inequality

and power mean inequality, we obtain

4
√

2 (16k + 8k) + 2k ≥ 4
√

4 · 12k + 2k > 8 · (3.4)k + 2k > 9 ·
(

8 · 3.4 + 2

9

)k

> 9 · 3k.

Equality holds in (7) if and only if v2 = 1, v3 = 0 and e2,4 = 2. Thus T ∈ Tn.

(iii) If n = 3s + 1, s ≥ 4 then v2 6= 0 or v3 6= 0. If v3 ≥ 1, then similarly as in (ii) we get:

X(T ) ≤2

3
(n + 1)

√
1 + 4k +

n− 5

3
· 2k
√

2− c34(e1,3 + e3,4)

≤2

3
(n + 1)

√
1 + 4k +

n− 5

3
· 2k
√

2− 3c34

=
2n + 1

3

√
1 + 4k +

n− 13

3
· 2k
√

2 + 3
√

3k + 4k. (9)

Let now v3 = 0. If v2 = 1, then the system of equations v1 + v4 = n− 1 and v1 + 4v4 = 2(n− 2)
has no integer solution. Thus v2 ≥ 2 and similarly as in (ii), we also get:

X(T ) ≤2

3
(n + 1)

√
1 + 4k +

n− 5

3
· 2k
√

2− c24(e1,2 + e2,4)

≤2

3
(n + 1)

√
1 + 4k +

n− 5

3
· 2k
√

2− 4c24

=
2

3
(n− 1)

√
1 + 4k +

n− 13

3
· 2k
√

2 + 4
√

2k + 4k,

from 4c24 < 3c34. Because 4c24 < 3c34 is equivalent to
√

1 + 4k +3
√

4k + 3k > 4
√

4k + 2k. Now
we prove this inequality. Then√

1 + 4k + 3
√

4k + 3k ≥ 4 8

√
(1 + 4k)(4k + 3k)3

= 4
8
√

27k + 3 · 36k + 3 · 48k + 64k + 108k + 3 · 144k + 3 · 192k + 256k

> 4 8

√
16k + 3 · 32k + 32k + (2 · 48k + 64k + 108k + 2 · 144k) + 128k + 3 · 128k + 256k

> 4 8

√
16k + 4 · 32k + 6 · ((2 · 48 + 64 + 108 + 2 · 144)/5)k + 4 · 128k + 256k

> 4
8
√

16k + 4 · 32k + 6 · 64k + 4 · 128k + 256k = 4
√

4k + 2k,
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by AM-GM inequality and power mean inequality. Hence, equality holds in (9) if and only if
v2 = 0, v3 = 1 and e3,4 = 3. Thus T ∈ CT n.

On the other hand, in each case we easily conclude that the equality holds if and only if
T ∈ CT n. �

Remark. In the introduction, we have mentioned that the investigation of chemical graphs
with extreme BID indices has been studied in [10]. In this paper, we have characterized extremal
chemical trees with respect to X index and highlight that Theorem 2.3 can also be addressed
using Theorem 2 in [10].
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