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Abstract

This paper deals with a time-space fractional Schrödinger
equation with homogeneous Dirichlet boundary conditions.
A common strategy for discretizing time-fractional operators
is finite difference schemes. In these methods, the time-step
size should usually be chosen sufficiently small, and subse-
quently, too many iterations are required which may be time-
consuming. To avoid this issue, we utilize the Laplace trans-
form method in the present work to discretize time-fractional
operators. By using the Laplace transform, the equation
is converted to some time-independent problems. To solve
these problems, matrix transformation and improved matrix
transformation techniques are used to approximate the spatial
derivative terms which are defined by the spectral fractional
Laplacian operator. After solving these stationary equations,
the numerical inversion of the Laplace transform is used to
obtain the solution of the original equation. The combination
of finite difference schemes and the Laplace transform creates
an efficient and easy-to-implement method for time-space frac-
tional Schrödinger equations. Finally, some numerical experi-
ments are presented and show the applicability and accuracy
of this approach.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction

By utilizing fractional order derivatives instead of integer derivatives, the concept of integer
derivatives can be extended to model complicated phenomena with nonlocality and long-term
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memory effects [1]. Due to their numerous applications in physics [2], chemistry [3], fluid
mechanics, mathematical biology [4, 5], and engineering, fractional differential equations have
been analyzed by many scientists for decades [6–8].

The Schrödinger equation, is fundamental in the field of quantum mechanics [9, 10]. It is
obtained from path integrals over Brownian paths [11]. These equations also occur in many
other realms of physics and chemistry, e.g. optics, plasma physics, chemical and biomolecular
product design. To predict associated molecular properties in any quantum chemical calcu-
lation, the Schrödinger equation must be solved [12]. Nanni in [13] utilized the Schrödinger
equation to investigate proton tunneling dynamics. Authors like Laskin [14, 15], Naber [16],
and Achar [17] developed generalizations of quantum mechanics. The Riesz space Schrödinger
equation was introduced using the Lévy path integral by Laskin [15] and the Caputo time-
fractional Schrödinger equation was studied by Naber [16]. Dong and Xu [18] developed a
space-time fractional Schrödinger (TS-FS) equation with Caputo fractional and the quantum
Riesz fractional operators. Fractional differential equations have numerous applications in the
modeling of the anomalous behavior of systems [19]. These applications have attracted many
researches [20–24].

Over the past decades, several numerical methods were developed for the standard and
fractional Schrödinger equations. Liao et al. [25] and Wang et al. [26] studied and analyzed
the fourth-order compact scheme for the solution of standard linear and nonlinear Schrödinger
(NS) equations, respectively. Dehghan and Taleei [27] utilized a compact split-step finite dif-
ference (FD) method for solving the NS equations with variable coefficients. Mohebbi [28] uti-
lized compact FD scheme for solving the Riesz space fractional diffusion equation. Karamali
et al. [29] used particle hydrodynamics method for solving Schrödinger and Schrödinger-
Boussinesq equations. Liu et al. [11] proposed finite difference scheme for the TS-FS equa-
tion. Fan and Qi [30] introduced the FD and finite element (FE) for temporal and spatial
discretization of the Caputo time and the Riesz space fractional Schrödinger equation, respec-
tively. There are several computational methods for time-fractional differential equations that
developed by the Laplace transform method (LTM) [31–33].

The LTM has been used in various researches to deal with time derivatives [34, 35]. Here, to
recover the numerical solution, at the beginning, we convert the considered equation to some
independent and stationary problems by LTM. Then, we will choose a space discretization
method to solve each stationary problem. Using the numerical inversion of the Laplace trans-
form (NILT) is the final step to achieve the solution. The LTM and the finite element methods
were used for time and space discretization of the parabolic equations, respectively [34, 35].
McLean et al. [36, 37] used this combination for the Volterra type integro-differential equation.
Instead of the FEM combined with LTM, RBF method is utilized for the parabolic equation on
the sphere [38, 39] by Le Gia and McLean. Jacobs [40] coupled LTM and a fourth-order compact
finite difference for time-fractional equations with Dirichlet and Neumann boundary condi-
tions. Uddin et al. [31, 32] worked on time-fractional diffusion and diffusion-wave equations
with LTM for temporal term combined with meshless methods. Mohammadi-Firouzjaei et al.
[41] combined local discontinuous Galerkin method (LDGM) with LTM to solve distributed-
order time-fractional equations. They also compared LDGM and LTM for solving fractional
compartmental model that applied in pharmacokinetics in [42]. Kamran et al.[43] proposed a
combination of LTM and meshless methods and solved time-fractional telegraph equations.

In the present study, we are dealing with space fractional operator. One can follow [44, 45]
for the matrix transformation technique (MTT) to deal with fractional spatial term with homo-
geneous and nonhomogeneous boundary conditions, respectively. Yang et al. [46] developed
some numerical methods for solving the Riesz fractional diffusion and advection–dispersion
equations utilizing MTT. Ding and Zhang [47] proposed a fourth-order improved matrix trans-
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formation technique (IMTT), which was based on a compact FD method for space-fractional
diffusion and advection-dispersion equations. Bhatt et al. in [48] considered space-fractional
reaction-diffusion equations and used the fourth-order IMTT and compact exponential time
differencing methods for space and time variables, respectively. Zhuang et al. used MTT for
variable-order space-fractional advection-diffusion equation [49]. For the space-fractional dif-
fusion equation, authors in [50], used a contour integral representation of the fractional power
of a matrix and approximated the integral by rational approximation. The MTT is developed
for space discretization of a two-dimensional time-space fractional diffusion equation by Yang
et al. [51].

The standard Schrödinger equation reads as follows:

i∂tu(x, t) + ∆u(x, t) + u(x, t) = f (x, t), (x, t) ∈ (a, b)× (0, T], (1)

subject to the initial condition u(x, 0) = u0(x) and

u(a, t) = g1(t), u(b, t) = g2(t), t ∈ (0, T],

in which i =
√
−1, ∂t =

∂
∂t . Also −∆ = − ∂2

∂x2 is one-dimensional positive self-adjoint elliptic
operator and g1(t) and g2(t) are some given functions. Decomposing u and f into their real-
valued functions as u = p + iq and f = f1 + i f2 converts Equation (1) to following real-valued
system of equations

∂t p(x, t) + ∆q(x, t) + q(x, t) = f2(x, t), (2a)

∂tq(x, t)− ∆p(x, t)− p(x, t) = − f1(x, t). (2b)

In this article, we will focus on the following TS-FS equation

iC
0 Dα

t u(x, t)− (−∆)γ/2u(x, t) + u(x, t) = f (x, t), (3)

subject to the initial condition u(x, 0) = u0(x) and

u(x, t) = 0, x ∈ R\(a, b), t ∈ (0, T],

where C
0 Dα

t is the Caputo type fractional derivative of order α, 0 < α ≤ 1 and 1 < γ ≤ 2. The
corresponding real-valued system of equations, after decomposing the complex function u in
Equation (3), is written as:

C
0 Dα

t p(x, t)− (−∆)γ/2q(x, t) + q = f2(x, t), (4a)

C
0 Dα

t q(x, t) + (−∆)γ/2 p(x, t)− p(x, t) = − f1(x, t). (4b)

There has been some investigation into numerical solutions for linear fractional SE. Zheng et
al. [52] utilized the Grünwald–Letnikov formulation and the spectral collocation method for
time and space discretization of linear time fractional SE. Ma and Chen [53] utilized L1 formula
on graded mesh and central difference scheme for this equation. Authors of [54] studied the
numerical solution of linear space fractional SE by using matrix approach. In [55] the Adomian
decomposition method is applied for linear space-time fractional SE.

Here, we aim to use a combination of Laplace transform and finite difference methods,
along with matrix transformation and improved matrix transformation techniques, to numer-
ically solve linear space-time fractional SE (3).
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1.1 Motivations

The main goal of this study is to introduce efficient numerical methods for solving the TS-FS
system of Equations (4). We use the LTM based on the FD methods. There are several different
approaches to time discretization, such as time-marching methods and Laplace transform ap-
proach. Due to the Courant-Friedrichs-Lewy (CFL) condition restriction in the time-marching
methods, we employ the LTM via the FD methods to prevent the time-stepping issue. We are
also facing the space fractional operator (−∆)γ/2, defined by spectral fractional Laplacian op-
erator. We use the matrix transformation technique (MTT) to deal with the fractional spatial
term. One of the advantages of using these techniques with FD method is the simplicity of the
development of similar algorithms for high-dimensional problems.

The rest of this paper is organized as follows: In the next section, we present some im-
portant definitions, notations and lemmas which are necessary for future sections. Section 3
provides a brief review of FD methods for spatial discretization of TS-FS Equation (3). Time
and space discretizations of the equation are presented in Section 4. Section 5 is devoted to sev-
eral examples with some discussion about the numerical simulation results. Finally, in Section
6 a conclusion is presented.

2 Preliminaries

Definition 2.1. Let α > 0 and n = dαe. The Caputo derivative of order α, denoted by C
0 Dα

t , is
defined [1] as:

C
0 Dα

t u(t) =
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 dnu(τ)

dτn dτ. (5)

For example, when 0 < α < 1 and n = 1, Equation (5) gives

C
0 Dα

t u(t) =
1

Γ(1− α)

∫ t

0
(t− τ)−α du(τ)

dτ
dτ, 0 < α < 1.

Theorem 2.2. ([1, 31]). If u(t) ∈ Cn[0, ∞), with α ∈ (n − 1, n), n ∈ N, the LT formula for the
Caputo fractional derivative reads:

L{C
0 Dα

t u(t)} = sαU (s)−
n−1

∑
k=0

sα−k−1u(k)(0), n− 1 < α < n, (6)

in which U (s) = L{u(t)}. Then, for n = 1, 0 < α < 1, we have

L{C
0 Dα

t u(t)} = sαU (s)− sα−1u(0).

We recall the following definitions from [44, 45] for the Laplacian and the homogeneous
spectral fractional Laplacian operators when the zero boundary condition is considered.

Definition 2.3. ([44]). Assume that φj’s are the eigenfunctions, corresponding to the eigenval-
ues of the Laplacian operator (−∆), in a bounded domain Ω = [0, Lx], respectively, i.e.

−∆φj = λjφj, in Ω, (7)

φj = 0, on ∂Ω,
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where λj =
j2π2

L2 and φj = sin( jπx
L ). Now consider

G1
η =

{
g : g =

∞

∑
j=1

gjφj, gj = 〈g, φj〉 |
∞

∑
j=1
|gj|2|λj|η < ∞, η = max(γ, 0)

}
. (8)

The homogeneous spectral fractional Laplacian operator of a function g ∈ G1
η is defined by

(−∆)
γ
2 g =

∞

∑
j=1

gj(λj)
γ
2 φj. (9)

Lemma 2.4. ([56]). Let T be a general tridiagonal Toeplitz matrix of order n− 1 as:

T =



a b
c a b

c
. . . . . .
. . . . . . b

c a

 ,

thus the eigenvalues λi and their corresponding eigenvectors of ξi are obtained by

λi = a + 2
√

bc cos
(

iπ
n

)
, ξi =



( c
b )

1
2 sin( 1iπ

n )

( c
b )

2
2 sin( 2iπ

n )

( c
b )

3
2 sin( 3iπ

n )
...

( c
b )

n−1
2 sin( (n−1)iπ

n )


, i = 1, . . . , n− 1. (10)

Additionally, T is diagonalizable and P diagonalizes T, i.e., T = PΛP−1 where

P = (ξ1, ξ2, ξ3, . . . , ξn−1) and Λ = diag(λ1, λ2, λ3, . . . , λn−1).

Consider a positive definite matrix, T, such that T = PΛP−1, in which P is an orthogonal
matrix. A fractional power of T is defined as [49] :

Tγ = PΛγP−1 = P diag(λγ
1 , λ

γ
2 , λ

γ
3 , . . . , λ

γ
n−1) P−1. (11)

3 A brief review of the spatial discretization schemes

In this section, at first, the FD methods are presented for the following TF-SE

C
0 Dα

t p + ∆q + q = f2, (12a)

C
0 Dα

t q− ∆p− p = − f1. (12b)

Then, we use the concluded semi-discrete scheme and also the matrix transform technique to
provide a semi-discrete scheme for Equation (4).
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3.1 Time fractional equation

This part is devoted to a brief review of the second-order central and the fourth-order compact
FD methods to approximate the solution of Equation (12).

Let nx be a positive integer and hx = Lx
nx

denotes the step size of spatial variable, i.e. xi =
ihx, i = 0, . . . , nx. The second-order central FD scheme is denoted as:

pxx ≈
1
h2

x
δ2

x pi + τi =
pi+1 − 2pi + pi−1

h2
x

+ τi, (13)

with the following truncation error

τi =
h2

x
12

(
d4 p(x)

dx4

)
+ O(h4

x). (14)

The central difference scheme gives a bounded matrix operator, A1d
cn, for approximation of the

Laplacian operator (−∆). The matrix representation of the semi-discretization of Equation (12)
is

C
0 Dα

t p−A1d
cnq + q = F2, (15a)

C
0 Dα

t q +A1d
cn p− p = −F1, (15b)

in which A1d
cn = 1

h2
x
Ã and

Ã =



2 −1 0
−1 2 −1

−1 2
. . .

. . . . . . −1
0 −1 2

, p =


p1
p2
p3
...

pnx−1

, q =


q1
q2
q3
...

qnx−1

, F i =


fi,1
fi,2
fi,3
...

fi,nx−1

, i = 1, 2.

(16)

Note that A1d
cn is a symmetric positive definite matrix. Also we can approximate the second-

order derivative by the high-order compact FD scheme [57, 58] as follows:

uxx ≈
1
h2

x

δ2
x

1 + 1
12 δ2

x
ui + O(h4

x). (17)

Thus, the matrix representation of the semi-discretization of Equation (12) is

C
0 Dα

t P−A1d
cpQ + Q = F2, (18a)

C
0 Dα

t Q +A1d
cpP− P = −F1, (18b)

where A1d
cp = B−1A1d

cn and

B =



5
6

1
12 0

1
12

5
6

1
12

1
12

5
6

. . .
. . . . . . 1

12
0 1

12
5
6

. (19)
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Now the goal is to get the power of the fractional order operator. To do this, one can use
Lemma 2.4. To accomplish this, we decompose A1d

cn and B as:

A1d
cn =

1
h2

x
p̃Λcn p̃−1, B = pΛp−1, (20)

where

p̃ = (ξ̃1, ξ̃2, ξ̃3, . . . , ξ̃nx−1), Λcn = diag(λ̃1, λ̃2, λ̃3, . . . , λ̃nx−1), (21)

p = (ξ1, ξ2, ξ3, . . . , ξnx−1), ΛB = diag(λ1, λ2, λ3, . . . , λnx−1),

such that

ξ̃i = ξi =



sin( 1iπ
nx

)

sin( 2iπ
nx

)

sin( 3iπ
nx

)
...

sin( (nx−1)iπ
nx

)

, λ̃i = 4sin2(
iπ

2nx
), λi = 1− 1

3
sin2(

iπ
2nx

), i = 1 : nx − 1. (22)

Now, according to the Lemma 2.4, we have A1d
cp = 1

h2
x

pΛcp p−1, subject to

p = (ξ1, ξ2, ξ3, . . . , ξnx−1), Λcp = diag
(

λ̃1

λ1
,

λ̃2

λ2
,

λ̃3

λ3
, . . . ,

λ̃nx−1

λnx−1

)
. (23)

3.2 Time-space fractional equation

Let us consider the TS-FS equation

C
0 Dα

t p− (−∆)γ/2q + q = f2, (24a)

C
0 Dα

t q + (−∆)γ/2 p− p = − f1. (24b)

The space fractional order γ will be integer when γ = 2 and non-integer, when 1 < γ < 2.
If γ = 2, one can use the FD schemes mentioned above. Now consider 1 < γ ≤ 2. WhenA

is the approximation of the the fractional Laplacian operator, using Definition 2.3, then (−∆)
γ
2

is approximated as (−∆)
γ
2 ≈ A

γ
2 by means of the matrix transformation technique. If so,

utilizing the central FD or compact FD, the semi-discrete scheme for Equation (24) is

C
0 Dα

t p−A
γ
2
$ q + q = F2, (25a)

C
0 Dα

t q +A
γ
2
$ p− p = −F1. (25b)

in which $ = cn, cp. Now, when A
γ
2
$ = PΛ

γ
2 P−1, close inspection of (11) reveals

C
0 Dα

t p−PΛ
γ
2 P−1q + q = F2, (26a)

C
0 Dα

t q + PΛ
γ
2 P−1 p− p = −F1. (26b)
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The compact form of Equation (26) is

C
0 Dα

t χ + Ξχ = F, (27)

where

χ =

[
P
Q

]
, Ξ =

[
O −PΛ

γ
2 P−1 + I

PΛ
γ
2 P−1 − I O

]
, F =

[
F2
−F1

]
. (28)

4 Numerical description

In this section, the Laplace transform-finite difference (LT-FD) method is used for time and
space discretizations of the TS-FS Equations (3). To do this, we implement FD method, use
MTT and obtain Equation (27) and finally, the LTM will be utilized for time discretization of
Equation (27). In the following subsection, a time discretization by the LTM and also a NILT
are presented.

4.1 The Laplace transform method

Taking Laplace transform from Equation (27) yields

sαχ̂(s)− sα−1χ(0) + Ξχ̂(s) = F (s). (29)

Rearranging gives

χ̂(s) = [sα I + Ξ]−1
(

sα−1χ(0) +F (s)
)

. (30)

Invertibility of above operators analyzed by McLean et al. [36, 37, 59, 60]. By using the ILT, the
solution is:

χ(t) =
1

2πi

∫
B

estχ̂(s) ds, (31)

in which B, the Bromwich line, is the line Re(s) = σ > σ0 [33]. The constant σ0 is considered
large enough such that all singularities of χ̂(s) lie in the left side of B. We follow the approach
presented in [34] and use notations therein. The key idea of this method is deformation of the
Bromwich line into a curve Γ, such that begins and ends in the left half-plane and Re(s)→ −∞
at the contour ends [33], in such a way the exponential term in the ILT decays rapidly. Then
the following contour is considered

Γ := {s : s(θ) = ϕ(θ) + iσθ, −∞ < θ < ∞} , (32)

where σ ∈ R+ and ϕ is a smooth function such that

ϕ(θ) ≈ −|θ|, for large |y|, and ϕ(θ) ≤ ς− |θ|.

Sheen et al. in [34] suggest that

ϕ(θ) = ς−
√

θ2 + ν2, θ ∈ R, (33)
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where ς and ν are real and strictly positive parameters, respectively. Also, s
′
(θ) = ϕ

′
(θ) + iσ.

If so, integral (31) is converted to the integral with an unbounded domain as follows

χ(t) =
1

2πi

∫
B

estχ̂(s) ds =
1

2πi

∫ ∞

−∞
es(θ)tχ̂(s(θ))s

′
(θ) dθ. (34)

Now, defineW(θ) := 1
2πi e

s(θ)tχ̂(s(θ))s
′
(θ), so that

χ(t) =
∫ ∞

−∞
W(θ) dθ =

∫ 1

−1
W(θ(η))θ

′
(η) dη, (35)

where

θ(η) =
ϕ(η)

τ
, ϕ(η) = log(

1 + η

1− η
).

As for the numerical integration, the trapezoidal rule with 2M + 1 points, ηm = m
M , −M ≤

m ≤ M is simple to carry out. We now write the approximation of the above integral as:

χM(t) =
1
M

[
W(θ−M)θ

′
−M +W(θM)θ

′
M

2
+

M−1

∑
m=−M+1

W(θm)θ
′
m

]
. (36)

As a final result, one obtains the fully discretization solution as:

χM,h(t) =
1
M

[
Wh(θ−M)θ

′
−M +Wh(θM)θ

′
M

2
+

M−1

∑
n=−M+1

Wh(θm)θ
′
m

]
. (37)

Here Wh(θm) = 1
2πi e

s(θm)tχ̂(s(θm))s
′
(θm) and each χ̂(s(θm)) can be evaluated by (30) using

provided methods. Note that, McLean and Thomée [59] proposed an approach based on
Duhamel’s formula such that the scheme does not use the Laplace transform of the source
term.
Remark 1. As demonstrated by [36] and [61], when t > 0, the quadrature error of (37) is

O(e−$ Ns
logNs ). On the other hand, the expected convergence rate of errors obtained by the FD

and compact FD is O(h2
x) and O(h4

x), respectively. As a result, the Laplace transform com-

bined with FD and compact FD are expected to have convergent rates O(h2 + e−$ Ns
logNs ) and

O(h4 + e−$ Ns
logNs ), respectively.

5 Numerical results

Here, we present the definition of error and the integration contour to illustrate more for what
we use in examples. We denote T, ũ, and u as the final time, numerical approximation and
exact solution of the equations, respectively. The maximum norm of errors, ‖En‖L∞

, and the
convergence rate are given as:

‖En‖L∞
= max

0≤i≤n
|ũi − u(xi, T)|, Rate = (ln(

n2

n1
))−1 ln

(
‖En1‖L∞

‖En2‖L∞

)
.

For solving the following examples, the we consider the integration contour (32) such that
ς = 2, ν = 0.5, σ = 1
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For the ease of notation, we consider u(x, t) = p(x, t) + iq(x, t) as the exact solution of the
first three cases below, where p(x, t) = tβψ0(x), q(x, t) = tβφ0(x), such that

ψr(x) =
∞

∑
j=1

8(−1)j+1 − 4
j6

(
j
2
)r sin(

jx
2
), φr(x) =

∞

∑
j=1

16(−1)j+1 − 8
j6

(
j
4
)r sin(

jx
4
).

Example 5.1. Consider the Schrödinger equation

i∂tu(x, t) + ∆u(x, t) + u(x, t) = f (x, t), x ∈ (0, 4π), (38)

where, the right-hand side (RHS) of the Equation (38) is

f (x, t) = iβtβ−1 (ψ0(x) + iφ0(x))− tβ (ψ2(x) + iφ2(x)) + tβ (ψ0(x) + iφ0(x)) ,

that means

f1(x, t) = −βtβ−1φ0(x)− tβψ2(x) + tβψ0(x), (39a)

f2(x, t) = βtβ−1ψ0(x)− tβφ2(x) + tβφ0(x). (39b)

Then

F1(x, s) = −β
Γ(β)

sβ
φ0(x)− Γ(1 + β)

s1+β
ψ2(x) +

Γ(1 + β)

s1+β
ψ0(x), (40a)

F2(x, s) = β
Γ(β)

sβ
ψ0(x)− Γ(1 + β)

s1+β
φ2(x) +

Γ(1 + β)

s1+β
φ0(x). (40b)

Table 1: Errors in maximum norm and computational order obtained for the first problem with
M = 150 and β = 3.

Central FD Compact FD

p q p q

error Rate error Rate error Rate error Rate

nx
10 1.7097e-03 – 1.1470e-02 – 7.7038e-05 – 6.6452e-04 –
20 4.1180e-04 2.540 3.1111e-03 1.882 2.6661e-05 1.531 5.6250e-05 3.562
40 1.2242e-04 1.750 7.8223e-04 1.992 2.4723e-06 3.431 4.0652e-06 3.790
80 3.2620e-05 1.908 1.9744e-04 1.986 1.6962e-07 3.865 2.7034e-07 3.910

160 8.2290e-06 1.987 4.9377e-05 1.999 1.1141e-08 3.928 1.7319e-08 3.964
320 2.0646e-06 1.995 1.2345e-05 2.000 7.1484e-10 3.962 1.0977e-09 3.980

Example 5.2. Consider the time fractional Schrödinger equation

iC
0 Dα

t u(x, t) + ∆u(x, t) + u(x, t) = f (x, t), x ∈ (0, 4π), (41)

with a RHS as:

f (x, t) = i
Γ(1 + β)

Γ(1 + β− α)
tβ−α (ψ0(x) + iφ0(x))− tβ (ψ2(x) + iφ2(x)) + tβ (ψ0(x) + iφ0(x)) ,

(42)
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that means

f1(x, t) = − Γ(1 + β)

Γ(β− α + 1)
tβ−αφ0(x)− tβψ2(x) + tβψ0(x), (43a)

f2(x, t) =
Γ(1 + β)

Γ(1 + β− α)
tβ−αψ0(x)− tβφ2(x) + tβφ0(x). (43b)

Then

F1(x, s) = Γ(1 + β)

[
− φ0(x)

s1+β−α
− ψ2(x)

s1+β
+

ψ0(x)
s1+β

]
, (44a)

F2(x, s) = Γ(1 + β)

[
ψ0(x)
s1+β−α

− φ2(x)
s1+β

+
φ0(x)
s1+β

]
. (44b)

Table 2: Errors in maximum norm and computational order obtained for the second problem
with M = 150, β = 4− α

2 and α = 0.5.

Central FD Compact FD

p q p q

error Rate error Rate error Rate error Rate

nx
10 6.0407e-03 – 2.1022e-02 – 2.7723e-04 – 1.0417e-03 –
20 1.5833e-03 1.932 5.6639e-03 1.892 4.1847e-05 2.728 7.5826e-05 3.780
40 3.9739e-04 1.994 1.4456e-03 1.970 3.1408e-06 3.736 5.1359e-06 3.884
80 9.9348e-05 2.000 3.6328e-04 1.992 2.1760e-07 3.851 3.3588e-07 3.935

160 2.4839e-05 2.000 9.0894e-05 2.000 1.4329e-08 3.925 2.1412e-08 3.971
320 6.2132e-06 1.999 2.2735e-05 1.999 9.1208e-10 3.974 1.3511e-09 3.986

Example 5.3. The third problem is the ST-FS equation as:

iC
0 Dα

t u(x, t)− (−∆)γ/2u(x, t) + u(x, t) = f (x, t), x ∈ (0, 4π). (45)

For this case, the RHS is given as below

f (x, t) = i
Γ(1 + β)

Γ(1 + β− α)
tβ−α (ψ0(x) + iφ0(x))− tβ (ψγ(x) + iφγ(x)) + tβ (ψ0(x) + iφ0(x)) ,

(46)

and the Laplace transform of its real and imaginary parts are

F1(x, s) = Γ(1 + β)

[
− φ0(x)

s1+β−α
−

ψγ(x)
s1+β

+
ψ0(x)
s1+β

]
, (47a)

F2(x, s) = Γ(1 + β)

[
ψ0(x)
s1+β−α

−
φγ(x)
s1+β

+
φ0(x)
s1+β

]
. (47b)
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Table 3: Errors in maximum norm and computational order obtained for the third problem
with M = 150, β = 4− α

2 , α = 0.5 and γ = 1.75.

Central FD Compact FD

p q p q

error Rate error Rate error Rate error Rate

nx
10 5.8954e-03 – 2.0181e-02 – 2.4002e-04 – 1.0139e-03 –
20 1.5231e-03 1.953 5.5076e-03 1.874 3.6066e-05 2.734 7.1625e-05 3.823
40 3.8288e-04 1.992 1.3898e-03 1.987 2.7920e-06 3.691 4.8715e-06 3.878
80 9.5801e-05 1.999 3.5019e-04 1.989 1.8606e-07 3.907 3.1204e-07 3.965

160 2.3990e-05 1.998 8.7591e-05 1.999 1.2117e-08 3.941 1.9742e-08 3.982
320 5.9976e-06 2.000 2.1900e-05 2.000 7.6598e-10 3.984 1.2403e-09 3.992

For all three cases, the final time is T = 1. The LTM is combined with central and compact
FD methods. In Tables 1 to 3, we show the maximum norm of the errors and the computational
orders of accuracy for the standard, time fractional and time-space fractional Schrödinger
equations, respectively . Two different FD methods are implemented and yield the second-
and fourth-order accurate results, as we expected. Figure 1 demonstrates the temporal con-
vergence of the scheme for the third example, which shows that the errors decay exponentially.
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Figure 1: Convergence plots of LTM with M = 10, . . . , 90 and nx = 800.

Example 5.4. Consider the following ST-FS equation as:

iC
0 Dα

t u(x, t)− (−∆)γ/2u(x, t) + u(x, t) = 0, x ∈ (0, 2π), (48)

with following initial condition

u(x, 0) = sin(x) + i sin(x/2). (49)

Figure 2 shows the approximation solution of LTM-(compact) FD method for a fix β and var-
ious α and Figure 3 reflect the behavior of the numerical solutions in terms of a fix α and
different values of β.
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Figure 2: Numerical solutions of Example 5.4 for β = 1.75 and α = 0.1, 0.5, 0.9.

6 Conclusion

In this work, we solve the time/ time-space fractional Schrödinger equation. For time dis-
cretization the Laplace transform method has been utilized. Spectral fractional Laplacian oper-
ators have been considered as the fractional differential operator. Here, we have dealt with the
definition of the spectral fractional Laplacian operator (−∆)γ/2. For space discretization of the
time-fractional Schrödinger equation, the central and compact finite difference schemes have
been used. For discretizing the space fractional term, we use matrix transformation technique.
In this technique the fractional Laplacian operator (−∆)γ/2 is approximated by fractional
power of A which is the spatial discretization of the Laplacian operator (−∆). The results of
the presented examples express the applicability of the approach. For a given time/time-space
fractional Schrödinger equation, the error convergence rate using the central finite difference
method is equal to two, whereas, by using the compact finite difference method, the error
convergence rate is four.
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Figure 3: Numerical solutions of Example 5.4 for α = 0.5 and β = 1.1, 1.5, 1.9.
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