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Abstract

The Laplacian eigenvalues and polynomials of the networks
play an essential role in understanding the relations between the
topology and the dynamic of networks. Generally, computation
of the Laplacian spectrum of a network is a hard problem and
there are just a few classes of graphs with the property that their
spectra have been completely computed. Laplacian spectrum
for n-prism networks was investigated in [Liu et al., Neurocom-
puting 198 (2016) 69-73]. In this paper, we give a method for
calculating the eigenvalues and characteristic polynomial of the
Laplacian matrix of a generalized n-prism network. We show
how such large networks can be constructed from small graphs
by using graph products. Moreover, our results are used to ob-
tain the Kirchhoff index and the number of the spanning trees in
the generalized n-prism networks. We also give some examples
of applications, that explain the usefulness and efficiency of the
proposed method.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction
The Internet, the social networks, polymer networks, and the World Wide Web are examples of
networks that indicate the importance of networks in science and our daily life [1, 2]. Usually,
a useful representation of a network is a graph, where the components of the network are rep-
resented by vertices and their mutual interactions by the edges of the graph. This model allows
us to apply graph theory tools and methods for studying complex networks [3–5]. According to
a great deal of research, the structural and dynamical properties of a network are determined
by the eigenvalue spectrum of its associated matrices[6].

In this study, we consider the Laplacian matrix of the networks [7]. More precisely, the
mathematical structure underlying any network is a graph G = (V (G), E(G)) consisting of a
set V (G) = {v1, . . . , vn} of vertices (sometimes called nodes) and a set E(G) of edges (sometimes
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Figure 1: Networks A: An n-prism (or P (g, n)) and B: the generalized n-prism
P (g, n, {u1, u3, u5}).

called links) connecting the vertices. The adjacency matrix of G is defined to be the matrix
A(G) = (aij)n×n, where aij = 1 if vivj ∈ E(G), and 0 otherwise. We denote the degree of the
vertex vi of G by degG(vi). The Laplacian matrix of G, denoted by L(G) = D(G) − A(G), is
the difference of D(G) = diag(degG(v1), . . . ,degG(vn)), the diagonal matrix of vertex degrees,
and the adjacency matrix of G. The spectrum and characteristic of this matrix are called
the Laplacian spectra and Laplacian polynomial of G, respectively. The study of the Lapla-
cian spectra of the graph networks plays an essential role in estimating important structural
properties, which provides information on the topological characteristics of the corresponding
networks [8, 9]. In addition, the Laplacian matrix has many applications in graph isomorphism
problems, computational techniques for differential equations, physical chemistry, biochemistry,
computer science, and the design of statical experiments [10–16].

Due to a lack of effective methods, determining the Laplacian spectra of large networks can
generally be challenging for mathematicians. Among the existing methods, the decomposition of
large networks into smaller networks is very common. For example, to build a n-prism network,
Liu and Cao have introduced an iterative way [17]. Let P (1, n) be an n-polygon whose vertices
are {u1, · · · , un}. Assume that for a positive integer g ≥ 2, the network P (g − 1, n) is defined.
For g ≥ 3; P (g, n) is obtained from P (g− 1, n) as follows: Every innermost node in P (g− 1, n)
gives birth to a new node and these n new nodes construct a new n-polygon. Now, by connecting
each new node with its corresponding ’mother’ node, as illustrated in Figure 1 A, we obtain
P (g, n). As a generalization, suppose that ∅ 6= U ⊆ {u1, · · · , un}. Then P (g, n, U), is called
the generalized n-prism network, obtained from p(g, n) by deleting the edges on the interior
bisectors of angles that do not belong to U (see, Figure 1 B). By this definition, a generalized
n-prism is a subnetwork of an n-prism network. Note that a P (g, n, U) network has gn vertices
and ng + (g − 1)|U | edges.

The Laplacian spectra of the 3-prism networks and n-prism networks have been studied in
[17] and [18], respectively. The Kirchhoff index of a network is defined as the sum of its resistance
distances between all pairs of vertices and has many applications in physics, chemistry, complex
networks, graph theory, etc. [19]. Also, the number of spanning trees characterizes the reliability
of a network and is closely related to its optimal synchronization and the study of random walks
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[20, 21].
In this paper, we explain a method for computing the spectra Laplacian matrix of the

generalized hierarchical product of two networks. Moreover, we indicates how this method can
be used to obtain the number of the spanning trees and the Kirchhoff index of P (g, n, U)-
networks.

2 Preliminaries
The Kronecker product A ⊗ B of two matrices A = (ai,j) and B of orders m × p and n × q,
respectively, is the partitioned matrix (aijB) of order mn×pq. If C and D are matrices of such
size that one can form the matrix products AC and BD, then (A⊗B)(C⊗D) = (AC)⊗ (BD).
By In, we denote the identity matrix of size n. We denote the characteristic polynomial of
the square matrix M by φM (x). In particular, if G is a network consisting of a set V (G) =
{v1, . . . , vn} of nodes and B = L(G), the Laplacian matrix of G, then we write φL(G)(x) by
ΦG(x). Similarly, eig(M) (eigenvalue spectrum of M) and eig(G) (Laplacian spectrum of G)
denote the set of eigenvalues of M and the set of eigenvalues of L(G), respectively. Suppose
that µ1(G) ≤ µ2(G) ≤ . . . ≤ µn(G) are the Laplacian spectra of G. It is known that L(G)
is a positive semidefinit matrix and µ1(G) = 0. Particularly, µ2(G) > 0 if and only if G is a
connected network. We recall that if τ(G) is the number of spanning trees of G, then by Matrix
Tree Theorem

n∏
i=2

µi(G) = |V (G)|τ(G). (1)

The resistance distance between vertices vi and vj in G, denoted by rij , is defined to be the
effective resistance between nodes vi and vj as computed by Ohm’s law in electrical network
theory. The Kirchhoff index of G, denoted by Kf(G), is defined as the sum of resistance
distances between all pairs of vertices in G. Gutman and Mohar [22] proved the following
identity:

Lemma 2.1. Let G be a connected network with n ≥ 2 vertices. Then

Kf(G) =

n∑
i=2

n

µi(G)
.

Theorem 2.2. Let G be a network with n ≥ 3 vertices. If Φ(G) = f1(x)f2(x) . . . ft(x), where
fi(x) is a polynomial, for i = 1, . . . t, then

τ(G) =
(−1)n−1

∑t
i=1 f

′

i (0)
∏t
j=1,j 6=i fj(0)

n
,

Kf(G)

n
= −

∑t
i=1 f

′′

i (0) +
∑t
i=1

∑t
j=1,j 6=i f

′

i (0)f
′

j(0)
∏t
k=1,k 6=i,j fk(0)

2
∑t
i=1 f

′
i (0)

∏t
j=1,j 6=i fj(0)

,

Kf(G) = (−1)n
∑t
i=1 f

′′

i (0) +
∑t
i=1

∑t
j=1,j 6=i f

′

i (0)f
′

j(0)
∏t
k=1,k 6=i,j fk(0)

2τ(G)
.

Proof. Assume that Φ(G) = f(x) = xn + a1x
n−1 + . . .+ an−2x

2 + an−1x. Then [17]

Kf(G)

n
= −an−2

an−1
,

τ(G) =
(−1)n−1an−1

n
.
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From an−1 = f
′
(0), 2an−2 = f

′′
(0) and f(x) = f1(x)f2(x) . . . ft(x), we deduce that

an−1 =

t∑
i=1

f
′

i (0)

t∏
j=1,j 6=i

fj(0), (2)

2an−2 =

t∑
i=1

f
′′

i (0) +

n∑
i=1

n∑
j=1,j 6=i

f
′

i (0)f
′

j(0)

n∏
k=1,k 6=i,j

fk(0). (3)

By using (2) and (3), we obtain the desirable result. �

In some cases, a pair of matrices A and B can be simultaneously diagonalized by the same
matrix. Here we mention an important theorem for the case that A and B are symmetric.

Theorem 2.3. Let A and B two symmetric real matrices. If AB = BA, then there exists an
orthogonal matrix Q , Q′Q = I, such that Q′AQ and Q′BQ are diagonal.

Proof. See [23]. �

Through this paper, if d ≥ 1, then Pd is the path on d vertices {u1, u2, · · · , ud} such that
uiui+1 ∈ E(Pd), for i = 1, . . . , d−1. Note that eig(Pd) = {4 sin2(πi2d )|i = 0, · · · , d−1} [7]. Also,
by joining u1 and ud in Pd, we obtain Cd, a d-polygon.

The following trigonometric identity has many applications in this paper.

Proposition 2.4. Let d be a positive integer. Then,

d−1∏
j=1

4 sin2(
πj

2d
) = d.

Proof. Obviously τ(Pd) = 1. By (1), we obtain

d∏
i=2

µi(Pd) = |V (Pd)|τ(Pd) = d.

This yields
∏d−1
j=1 4 sin2(πj2d ) = d. �

3 The spectra Laplacian of generalized n- prism networks

Consider P (g, n) (g ≥ 2) and let at g = 1, H := P (1, n) be the n-polygon with V (H) =
{u1, · · · , un}. For U ⊆ V (H), we give a method to obtain eig(P (g, n, U)) and ΦP (g,n,U). It is
easy to check that

L(P (g, n, U)) = Ig ⊗ L(H) + L(Pg)⊗D(U),

where D(U) = diag(χU (h1), · · · , χU (hn)) and χU denotes the characteristic function of the set
U .

Theorem 3.1. Let K = P (g, n, U) and eig(Pg) = {µ1(G), · · · , µg(G)}. Then,

eig(K) =

g⋃
i=1

eig
(
L(H) + µiD(U)

)
and ΦK(x) =

g∏
i=1

ΦL(H)+µiD(U)(x).
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Proof. Since L(Pg) and In are commuting symmetric matrices, Theorem 2.3 shows that there
exists an orthogonal matrix Q such that Q

′
L(G)Q and Q

′
ImQ are simultaneously diagonaliz-

able. Without loss of generality, we can assume that
Q

′
L(Pg)Q = diag(µ1(Pg), . . . , µg(Pg)). Let T := Q⊗ In. Then, T

′
= (Q⊗ In)

′
= Q

′ ⊗ In and
T

′
T = Q

′
Q⊗ InIn = Ig ⊗ In = Ign. Therefor,

T
′
L(K)T = (Q

′
⊗ In)

(
Ig ⊗ L(H) + L(Pg)⊗D(U)

)
(P ⊗ In)

=
(
Q

′
Ig ⊗ InL(H) +Q

′
L(Pg)⊗ InD(U)

)
(Q⊗ Ig)

= Q
′
IgQ⊗ InL(H)In +Q

′
L(Pg)Q⊗ InD(U)In

=

 1
. . .

1

⊗ L(H) +

 µ1(Pg)
. . .

µg(Pg)

⊗D(U)

=

 L(H)
. . .

L(H)

+

 µ1(G)D(U)
. . .

µg(Pg)D(U)


=

 L(H) + µ1(Pg)D(U)
. . .

L(H) + µg(Pg)D(U)

 .
Thus, if

M :=

 L(H) + µ1(Pg)D(U)
. . .

L(H) + µg(Pg)D(U)

 ,
then M and L(K) are similar. This yields ΦL(K)(x) = φM (x). Because M is a diagonal block
matrix, we obtain φM (x) =

∏g
i=1 φL(H)+µi(Pg)D(U)(x). In addition, the eigenvalues of L(K)

are the roots of ΦK(x). Hence, eig(K) =
⋃g
i=1 eig

(
L(H) + µi(G)D(U)

)
. �

Theorem 3.2. Let K = P (g, n, U). Then,

eig(Cn) ⊆ eig(K), and ΦCn(x)|ΦK(x).

Proof. Since 0 ∈ eig(Pg), Theorem 3.1 implies that, eig(L(H) + 0D(U)) ⊆ eig(K). Therefore
eig(H) ⊆ eig(K), and hence ΦH(x)|ΦK(x). But H = P (1, n) ∼= Cn, which gives the result. �

4 Some examples and applications

Theorem 3.1 provides a method for calculating the eigenvalues and characteristic polynomial
of the Laplacian matrix of weakly prism networks. In the remainder of this article, we explain
this method.

Example 4.1. Assume thatH = C3, and V (H) = {u1, u2, u3}. We consider the three following
cases.
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Figure 2: Networks A: A 3-prism network, B: P (g, 3, {u1, u2}) network and C: P (g, 3, {u1})
network.

I. For P (g, 3, {u1, u2}), illustrated in Figure 2 B, Theorem 3.1 yields

eig(P (g, 3, {u1, u2}))

=

g−1⋃
i=0

eig

(
L(H) + 4 sin2(

πi

2g
)D({u1, u2})

)

=

g−1⋃
i=0

eig

( 2 + 4 sin2(πi2g ) −1 −1

−1 2 + 4 sin2(πi2g ) −1

−1 −1 2

)

=

g−1⋃
i=0

{
3 + 4 sin2(

πi

2g
),

3

2
+ 2 sin2(

πi

2g
)± 1

2

√
9− 8 sin2(

πi

2g
) + 16 sin4(

πi

2g
)

}
.

Moreover,

ΦP (g,3,{u1,u2}) =

g−1∏
i=0

[
x3 − (6 + 8 sin2(

πi

2g
))x2 + (9 + 32 sin2(

πi

2g
)

+ 16(sin(
πi

2g
))4)x− 24 sin2(

πi

2g
)− 32 sin4(

πi

2g
)

]
.

Therefore, by using Proposition 2.4, we obtain:

τ(P (g, 3, {u1, u2})) =

∏g−1
i=0 (3 + 4 sin)2(πi2g )× 3×

∏g−1
i=1 (8 sin2(πi2g ))

3g

=

∏g−1
i=0 (3 + 4 sin2(πi2g ))× 3× 2g−1g

3g

= 2g−1
g−1∏
i=0

(3 + 4 sin2(
πi

2g
)),

and
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Kf(P (g, 3, {u1, u2}))

=

g−1∑
i=0

3g

3 + 4 sin2(πi2g )
+

3g

3
+

g−1∑
i=1

3g

3
2 + 2 sin2(πi2g ) + 1

2

√
9− 8 sin2(πi2g ) + 16 sin4(πi2g )

+

g−1∑
i=1

3g

3
2 + 2 sin2(πi2g )− 1

2

√
9− 8 sin2(πi2g ) + 16 sin4(πi2g )

=

g−1∑
i=0

3g

3 + 4 sin2(πi2g )
+ g +

g−1∑
i=1

3g(3 + 4 sin2(πi2g ))

8 sin(πi2g )2
.

II. For P (g, {u1}), illustrated in Figure 2 C, Theorem 3.1 implies

eig(P (g, 3, {u1})) =

g−1⋃
i=0

eig

(
L(H) + 4 sin2(

πi

2g
)D({u1})

)

=

g−1⋃
i=0

eig

( 2 + 4 sin2(πi2g ) −1 −1

−1 2 −1
−1 −1 2

)

=

g−1⋃
i=0

{
3,

3

2
+ 2 sin2(

πi

2g
)± 1

2

√
9 + 8 sin2(

πi

2g
) + 16 sin4(

πi

2g
)

}
.

Moreover,

ΦP (g,3,{u1}) =

g−1∏
i=0

[
x3 − (6 + 4 sin2(

πi

2g
))x2 + (9 + 16 sin2(

πi

2g
))x− 12 sin2(

πi

2g
)

]
.

Consequently, by using Proposition 2.4, we get:

τ(P (g, 3, {u1, u2})) =

∏g−1
i=0 (3)× 3×

∏g−1
i=1 (4 sin2(πi2g ))

3g

=
3g × 3× g

3g
= 3g,

and

Kf(P (g, 3, {u1}))

=

g−1∑
i=0

3g

3
+

3g

3
+

g−1∑
i=1

3g

3
2 + 2 sin2(πi2g ) + 1

2

√
9 + 8 sin2(πi2g ) + 16 sin4(πi2g )

+

g−1∑
i=1

3g

3
2 + 2 sin2(πi2g )− 1

2

√
9 + 8 sin2(πi2g ) + 16 sin4(πi2g )

= g2 + g +

g−1∑
i=1

3g(3 + 4 sin2(πi2g ))

4 sin(πi2g )2)
.
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III. For P (g, {u1, u2, u3}), or 3-prism network, illustrated in Figure 2 A, Theorem 3.1 gives

eig(P (g, 3, {u1, u2, u3})) =

g−1⋃
i=0

eig

(
L(H) + 4 sin2(

πi

2g
)D({u1, u2})

)

=

g−1⋃
i=0

eig

( 2 + 4 sin2(πi2g ) −1 −1

−1 2 + 4 sin2(πi2g ) −1

−1 −1 2 + 4 sin2(πi2g )

)

=

g−1⋃
i=0

{
4 sin2(

πi

2g
), 3 + 4 sin2(

πi

2g
), 3 + 4 sin2(

πi

2g
)

}
.

Moreover,

ΦP (g,3,{u1,u2,u3}) =

g−1∏
i=0

[
x3 − (6 + 12 sin2(

πi

2g
))x2 + (9 + 48 sin2(

πi

2g
) + 48 sin4(

πi

2g
))x

− 36 sin2(
πi

2g
)− 96 sin4(

πi

2g
)− 64 sin6(

πi

2g
)

]
.

Therefore, by using Proposition 2.4, we have:

τ(P (g, 3, {u1, u2, u3})) =

∏g−1
i=1 (4 sin2(πi2g ))×

∏g−1
i=0 [3 + 4 sin2(πi2g )]2

3g

=

∏g−1
i=0 [3 + 4 sin2(πi2g )]2

3

and

Kf(P (g, 3, {u1, u2, u3})) =

g−1∑
i=1

3g

4 sin2(πi2g )
+

g−1∑
i=0

6g

3 + 4 sin2(πi2g )
.

If we consider G := P (g, 3, {u1, u2}, then Figure 3 shows the time consumption of Maple
software, for computing τ(G), before using our method. After using this method (see Case I
in Example 4.1), this time becomes almost zero. We show our computations in Table 1.

Example 4.2. Now, assume that H = C4, and V (H) = {u1, u2, u3, u4}. Then we consider the
following cases:

I. Let U = {u1, u2}. Then, for P (g, U), illustrated in Figure 4 C by Theorem 3.1, we deduce
that

eig(P (g, 4, {u1, u2}))

=

g−1⋃
i=0

eig

(
L(H) + 4 sin2(

πi

2g
)D({u1, u2})

)

=

g−1⋃
i=0

eig

(
2 + 4 sin2(πi2g ) −1 0 −1

−1 2 + 4 sin2(πi2g ) −1 0

0 −1 2 −1
−1 0 −1 2

)

=

g−1⋃
i=0

{
1 + 2 sin2(

πi

2g
)±

√
1 + 4 sin4(

πi

2g
), 3 + 2 sin2(

πi

2g
)±

√
1 + 4 sin4(

πi

2g
)

}
.
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Figure 3: Time consumption of Maple software, for computing τ , before using our method:
Horizontal g in P (g, 3, {u1, u2}).

Hence, by using Proposition 2.4, we obtain:

τ(P (g, 4, {u1, u2})) =
2×

∏g−1
i=1 (4 sin2(πi2g ))×

∏g−1
i=0 [8 + 12 sin2(πi2g )]

4g

=

∏g−1
i=0 [8 + 12 sin2(πi2g )]

2
= 22g−1

g−1∏
i=0

[2 + 3 sin2(
πi

2g
)],

Table 1: The number of spanning trees and Kirchhoff index for P (g, 3, {u1, u2})-Prism.

Weakly prism The number of spanning trees Kirchhoff index
P (3, 3, {u1, u2}) 288 36.75
P (4, 3, {u1, u2}) 2760 78.6173912952
P (5, 3, {u1, u2}) 26448 142.7949182
P (6, 3, {u1, u2}) 253440 233.7818182
P (7, 3, {u1, u2}) 2428608 356.0780298
P (10, 3, {u1, u2}) 2136998402 955.8225098
P (20, 3, {u1, u2}) 13951688857603276802 6842.575755
P (60, 3, {u1, u2}) 0.2534644899× 1059 169698.896
P (100, 3, {u1, u2}) 0.4604764957× 1098 771450.1082
P (1000, 3, {u1, u2}) 0.9936653997× 10981 752153687.9
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Figure 4: Networks A: A 4-prism network, B: P (g, 4, {u1, u2, u4}) , C: P (g, 3, {u1, u2}), D:
P (g, 4, {u1}) and E: P (g, 4, {u2, u4}).

Kf(P (g, 4, {u1, u2}))

=
4g

2
+

g−1∑
i=1

4g

1 + 2 sin2(πi2g ) +
√

1 + 4 sin4(πi2g )
+

g−1∑
i=1

4g

1 + 2 sin2(πi2g )−
√

1 + 4 sin4(πi2g )

+

g−1∑
i=0

4g

3 + 2 sin2(πi2g ) +
√

1 + 4 sin4(πi2g )
+

g−1∑
i=0

4g

3 + 2 sin2(πi2g )−
√

1 + 4 sin4(πi2g )

= 2g +

g−1∑
i=1

2g(1 + 2 sin2(πi2g ))

sin2(πi2g )
+

g−1∑
i=0

2g(3 + 2 sin2(πi2g ))

2 + 3 sin2(πi2g )
.

II. Let U = {u1, u3}. Then, for P (g, U), illustrated in Figure 4 E, Theorem 3.1 yields

eig(P (g, 4, {u1, u3})) =

g−1⋃
i=0

eig

(
L(H) + 4 sin2(

πi

2g
)D({u1, u3})

)

=

g−1⋃
i=0

eig

(
2 + 4 sin2(πi2g ) −1 0 −1

−1 2 −1 0
0 −1 2 + 4 sin2(πi2g ) −1

−1 0 −1 2

)

=

g−1⋃
i=0

{
2, 2 + 4 sin2(

πi

2g
), 2 + 2 sin2(

πi

2g
)± 2

√
1 + sin4(

πi

2g
)

}
.

Therefore, by using Proposition 2.4, we obtain:

τ(P (g, 4, {u1, u3})) =
2g ×

∏g−1
i=0 [2 + 4 sin2(πi2g )]× 4×

∏g−1
i=1 [8 sin2(πi2g )]

4g

= 23g−1
g−1∏
i=0

[1 + 2 sin2(
πi

2g
)] ,
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and

Kf(P (g, 4, {u1, u3})) =

g−1∑
i=0

4g

2
+

g−1∑
i=0

4g

2 + 4 sin2(πi2g )
+

4g

4

+

g−1∑
i=1

4g

2 + 2 sin2(πi2g ) + 2
√

1 + sin4(πi2g )

+

g−1∑
i=1

4g

2 + 2 sin2(πi2g )− 2
√

1 + sin4(πi2g )

= 2g2 +

g−1∑
i=0

2g

1 + 2 sin2(πi2g )
+ g +

g−1∑
i=1

2g(1 + sin2(πi2g ))

sin2(πi2g )
.

III. Let U = {u1, u2, u3, u4}. Then, for P (g, 4, U), 4-prism network, illustrated in Figure 4 A,
Theorem 3.1 implies

eig(P (g, 4, {u1, u2, u3, u4}))

=

g−1⋃
i=0

eig

(
L(H) + 4 sin2(

πi

2g
)D({u1, u2, u3, u4})

)

=

g−1⋃
i=0

eig

(
2 + 4 sin2(πi2g ) −1 0 −1

−1 2 + 4 sin2(πi2g ) −1 0

0 −1 2 + 4 sin2(πi2g ) −1

−1 0 −1 2 + 4 sin2(πi2g )


)

=

g−1⋃
i=0

{
4 sin2(

πi

2g
), 4 + 4 sin2(

πi

2g
), 2 + 4 sin2(

πi

2g
), 2 + 4 sin2(

πi

2g
)

}
.

Consequently, by using Proposition 2.4, we get:

τ(P (g, 4, {u1, u2, u3, u4})) =

∏g−1
i=1 [4 sin2(πi2g )]

∏g−1
i=0 [4 + 4 sin2(πi2g )]

∏g−1
i=0 [2 + 4 sin2(πi2g )]2

4g

= 24g−2
g−1∏
i=0

[1 + sin2(
πi

2g
)]

g−1∏
i=0

[1 + 2 sin2(
πi

2g
)]2.

Kf(P (g, 4, {u1, u3})) =

g−1∑
i=1

g

sin2(πi2g )
+

g−1∑
i=0

g

1 + sin2(πi2g )
+

g−1∑
i=0

4g

1 + 2 sin2(πi2g )
.

IV. For U = {u1} or U = {u1, u2, u3}, see Figure 4 D and B, we can compute the Laplacian
polynomial of P (g, 4, U) as follows:

ΦP (g,4,{u1}) =

g−1∏
i=0

[
x4 − (8 + 4 sin2(

πi

2g
))x3 + (20 + 24 sin2(

πi

2g
))x2

− (16 + 40 sin2(
πi

2g
))x+ 16 sin2(

πi

2g
)

]
.
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ΦP (g,4,{u1,u2,u3}) =

g−1∏
i=0

[
x4 − (8 + 12 sin2(

πi

2g
))x3 + (20 + 72 sin2(

πi

2g
)

+ 48 sin4(
πi

2g
))x2 − (16 + 120 sin2(

πi

2g
) + 192 sin4(

πi

2g
)

+ 64 sin6(
πi

2g
))x+ 48 sin2(

πi

2g
) + 160 sin4(

πi

2g
) + 128 sin6(

πi

2g
)

]
.

Therefore, by Theorem 2.2, we have:

τ(P (g, 4, {u1})) = (−1)4g−1
∑g−1
i=0 (−16− 40 sin2(πi2g ))

∏g−1
j=0,j 6=i 16 sin2(πj2g )

4g

= −
(−16)

∏g−1
j=1 16 sin2(πi2g )

4g
= 4g.

Also, based on Proposition 2.4, we obtain:

Kf(P (g, 4, {u1})) =
(−1)4g

2τ(P (g, 4, {u1}))

( g−1∑
i=0

(40 + 48 sin2(
πi

2g
))

+

g−1∑
i=0

g−1∑
j=0,j 6=i

(16 + 40 sin2(
πi

2g
))(16 + 40 sin2(

πj

2g
))

g−1∏
k=0,k 6=i,j

16 sin2(
πk

2g
)

)

=
1

2× 4g

(
64g − 24 + 32

g−1∑
j=1

(16 + 40 sin2(
πj

2g
))

g−1∏
k=1,k 6=j

16 sin2(
πk

2g
)

)
.

τ(P (g, 4, {u1, u2, u3})) =
(−1)4g−1

4g

( g−1∑
i=0

−(16 + 120 sin2(
πi

2g
) + 192 sin4(

πi

2g
)

+ 64 sin6(
πi

2g
))

g−1∏
j=0,j 6=i

[48 sin2(
πj

2g
) + 160 sin4(

πj

2g
) + 128 sin6(

πj

2g
)]

)

=
(−1)4g−1

4g
(−16)×

( g−1∏
j=1

[48 sin2(
πj

2g
) + 160 sin4(

πj

2g
) + 128 sin6(

πj

2g
)]

)

=
4

g

( g−1∏
j=1

(4 sin2(
πj

2g
))× 4g−1 ×

g−1∏
j=1

[3 + 10 sin2(
πj

2g
) + 8 sin4(

πj

2g
)]

)

= 4g
g−1∏
j=1

[3 + 10 sin2(
πj

2g
) + 8 sin4(

πj

2g
)].
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