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Abstract

In this paper, we calculate the expected values of the first
and second Zagreb indices, denoted as E (M1) and E (M2)
respectively, as well as the expected value of the forgotten index,
E (F ), for two models of random bipartite graphs. To evaluate
our findings, we establish the growth rate by demonstrating
that for a random bipartite graph G of order n in either model,
the expected value of M1(G) is O

(
n3
)
. Furthermore, we prove

that the expected values of M2(G) and F (G) are both O
(
n4
)
.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction
The study of random graphs is a critical area in theoretical graph theory with numerous appli-
cations in physics. Currently, they are commonly utilized as standard null models in simulating
a variety of physical processes on graphs and networks, as discussed in [1]. A random graph
involves a set of isolated vertices and starting with a random manner by adding edges between
them. Various random graph models generate distinct probability distributions for the result-
ing graphs. One of the frequently studied models is G(n, p), encompassing all labeled graphs
with n vertices. In this model, each possible edge appears independently with a probability
of 0 < p < 1, as explained in references [2, 3]. Another natural model of random graphs is
G(n,m), which represents the probability space of all graphs with n labeled vertices and m
edges. In [4, 5], Erdös and Rényi considered these random graphs.
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Here we only consider bipartite graphs with no multiple edges and no loops. In a random
bipartite graph G(n1, n2, p), there are n1 labeled vertices of one color (e.g., red) and n2 labeled
vertices of another color (e.g., blue) and let each of n1n2 possible edges connecting a red vertex
with a blue one, occurs with a prescribed probability p, (0 < p < 1), independent of all other
edges [6, 7]. A random bipartite graph in G(n1, n2,m) is a random bipartite graph with vertex
partition sizes (n1, n2) and m number of edges [7]. The notation of random bipartite graph
models is consistent with that used for the general random graph models considered in [8].

Assume that G is a graph with the sets V (G) = {v1, . . . , vn} and E(G) as the vertex set
and edge set, respectively. For a vertex v in G, its degree is denoted by d(v). The n×n matrix
A = [aij ] is the adjacency matrix of the graph G, where aij = 1 if vivj ∈ E(G) and aij = 0,
otherwise. Suppose G is a bipartite graph with vertex set partitioned as V (G) = (U,W ),
where U = {u1, . . . , un1} and W = {w1, . . . , wn2}. The adjacency matrix of G has the block

form A =

(
0n1n1

B
BT 0n2n2

)
, where B is a n1 × n2 matrix with bij = 1 if uiwj ∈ E(G), and

bij = 0 otherwise. Additionally, 0n1n1 and 0n2n2 are zero matrices of orders n1 × n1 and
n2 × n2, respectively. The matrix B uniquely represents the bipartite graph G, rendering the
remaining parts of A redundant. As a result, B is commonly referred to as the biadjacency
matrix of G. It is noteworthy that each random bipartite graph in G(n1, n2, p) corresponds to
a random (0, 1)-matrix B of order n1 × n2, where each entry is equal to 1 with probability p,
and vice versa. Similarly, a random bipartite graph in G(n1, n2,m) can be represented by a
random (0, 1)-matrix B of order n1 × n2 that contains exactly m entries equal to 1, and vice
versa. Consequently, investigating bipartite random graphs are interchangeable with studying
the associated random (0, 1)-matrices.

By a graph invariant or a topological index, we mean a numerical quantity that can be
determined for a graph, uniquely. Also, it remains unchanged under graph isomorphism. In
chemistry, graph invariants are widely used as molecular descriptors. Thus various graph in-
variants have been studied in chemical graph theory and applied in research. The first Zagreb
(M1) and the second Zagreb index (M2) are among the oldest and most extensively investigated
invariants, for further details on degree-based graph invariants refer to [9–15]. These indices
are defined as follows for a graph G:

M1(G) =
∑

ab∈E(G)

d(a) + d(b) =
∑

u∈V (G)

d2(u) and M2(G) =
∑

ab∈E(G)

d(a)d(b).

One can arises the forgotten topological index as a measure of a graph’s structural properties, by
substituting the cube of the vertex degrees in the first Zagreb index instead of the square. This
index was introduced in [16], denoted by F (G). The applications of F (G) were demonstrated
in [16].

F (G) =
∑

ab∈E(G)

d2(a) + d2(b) =
∑

u∈V (G)

d3(u).

Consider a random bipartite graph G with bipartition sizes n1 and n2, and corresponding
biadjacency matrix B. Alternatively, one can consider a random (0, 1)-matrix B. In either
case, the following relationship holds:

M1(G) = D1D
T
1 +DT

2 D2,

where D1 = jTn1
B and D2 = Bjn2

are two vectors containing the degrees of vertices in two parts
of G and jn is an n× 1 matrix consisting of all ones. Furthermore, let R = (r1, . . . , rn1

)T and
S = (s1, . . . , sn2)

T are two real-valued column vectors, and C = [cij ] is an n1 × n2 real-valued
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matrix. It is apparent that

RTCS =
∑

1≤p≤n1,1≤q≤n2

cpqrpsq.

Therefore, for a random bipartite graph G whose biadjacency matrix is B (alternatively, for a
random (0, 1)-matrix B), the following correlation can be derived:

M2(G) = D1BDT
2 .

Consider a random bipartite graph G with parts U = {u1, . . . , un1} and W = {w1, . . . , wn2}.
The indicator random variables Xij , 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 are defined as follows:

Xij =

{
1, if ui is adjacent to wj ,
0, otherwise.

It is important to observe that for a random bipartite graph G with edge probability p,
denoted by G(n1, n2, p), the indicator random variables Xij and Xrs are independent when
1 ≤ i, r ≤ n1, 1 ≤ j, s ≤ n2, and i, j 6= r, s. Also if G is a random bipartite graph with a fixed
number of edges m, denoted by G(n1, n2,m), then the indicator random variables Xij are not
independent, where 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. The expected value of a random variable
such as X is its average value, denoted by E(X). When two random variables A and B are
independent, it follows that E(AB) = E(A)E(B). Furthermore, in the case in which A is an
indicator random variable, then E(Ak) = E(A) for every k > 0.

The authors in [17] calculated the expected values of generalized Zagreb indices of graphs in
G(n, p) and G(n,m). Motivated by this, here we continue the process of exploring the expected
values of the first and second Zagreb indices, along with the forgotten index, for graphs in
G(n1, n2, p) and G(n1, n2,m). We also analyze the growth rates of these indices’ expected
values.

2 Random bipartite graphs G(n1, n2, p)

This section derives the expected values of certain degree-based graph invariants for random
bipartite graphs G(n1, n2, p). The main theorem of this section is presented below.

Theorem 2.1. Let G ∈ G(n1, n2, p) and n1, n2 ≥ 2. Then

(a) E (M1(G)) = pn1n2(p(n1 + n2 − 2) + 2),

(b) E (M2(G)) = n1n2

(
p+ (n1 + n2 − 2)p2 + (n1 − 1)(n2 − 1)p3

)
.

Also if n1, n2 ≥ 3, then

(c) E (F (G)) = pn1n2(p
2(n2 − 1)(n2 − 2) + p2(n1 − 1)(n1 − 2) +3p(n1 + n2 − 2) + 2.

Proof. Let U and W be the bipartition parts of V (G) such that U = {u1, . . . , un1
} and W =

{w1, . . . , wn2
}. Consider a random variable Di for the degree of ui, i = 1, . . . , n1, and similarly,

consider Dj as a random variable associating to the degree of wj , j = 1, . . . , n2. So, for each
1 ≤ i ≤ n1, Di =

∑n2

k=1 Xik, where each Xik is an indicator random variable corresponding to
the edge uiwk and similarly, for every 1 ≤ j ≤ n2, Dj can be computed as Dj =

∑n1

r=1 Xjr.



30 S. Samaie et al. / Expected Value of Zagreb Indices of Random Bipartite Graphs

Now, we have

E (M1(G)) = E

 n1∑
i=1

D2
i +

n2∑
j=1

D2
j

 =

n1∑
i=1

E
(
D2

i

)
+

n2∑
j=1

E
(
D2

j

)
=

n1∑
i=1

E

(
(

n2∑
k=1

Xik)
2

)
+

n2∑
j=1

E

(
(

n1∑
r=1

Xjr)
2

)

=

n1∑
i=1

E

(
n2∑
k=1

X2
ik

)
+

n1∑
i=1

E

 n2∑
k=1

n2∑
t=1
t6=k

XikXit


+

n2∑
j=1

E

(
n1∑
r=1

X2
jr

)
+

n2∑
j=1

E

 n1∑
r=1

n1∑
s=1
s 6=r

XjrXjs

 ,

and so,

E (M1(G)) =

n1∑
i=1

n2∑
k=1

E
(
X2

ik

)
+

n1∑
i=1

n2∑
k=1

n2∑
t=1
t 6=k

E (XikXit)

+

n2∑
i=1

n1∑
r=1

E
(
X2

jr

)
+

n2∑
j=1

n1∑
r=1

n1∑
s=1
s 6=r

E (XjrXjs)

= n1n2p+ n1n2(n2 − 1)p2 + n2n1p+ n2n1(n1 − 1)p2

= 2n1n2p+ n1n2(n1 + n2 − 2)p2,

as desired. Now, continue with the exploring of the second Zagreb index’s expected value, as
follows:

E (M2(G)) = E

 ∑
uiwj∈E(G)

DiDj

 = E

 n1∑
i=1

n2∑
j=1

DiDjXij

 (1)

=

n1∑
i=1

n2∑
j=1

E (DiDjXij) .

Consider E (DiDjXij) in the last summation in Equation (1) for fixed positive integers i and
j. Due to Xst’s are independent variables, s = 1, . . . , n1 and t = 1, . . . , n2, the following holds.

E (DiDjXij) =

n2∑
k=1

n1∑
r=1

E (XikXjrXij) (2)

= E (XijXjiXij) +

n2∑
k=1
k 6=j

E (Xik)E (XjiXij)

+

n1∑
r=1
r 6=i

E (Xjr)E (XijXij) +

n2∑
k=1
k 6=j

n1∑
r=1
r 6=i

E(Xik)E(Xjr)E(Xij)

= p+ (n2 − 1)p2 + (n1 − 1)p2 + (n1 − 1)(n2 − 1)p3.
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The equations in (1) and (2) yield the next relations:

E (M2(G)) =

n1∑
i=1

n2∑
j=1

E (DiDjXij)

=

n1∑
i=1

n2∑
j=1

(
p+ (n1 + n2 − 2)p2 + (n1 − 1)(n2 − 1)p3

)
= n1n2

(
p+ (n1 + n2 − 2)p2 + (n1 − 1)(n2 − 1)p3

)
,

which gives the Part (b).
In the sequel, we obtain the expected value of the forgotten index of G.

E (F (G)) = E

 ∑
ui∈U(G)

D3
i +

∑
wj∈W (G)

D3
j

 =

n1∑
i=1

E
(
D3

i

)
+

n2∑
j=1

E
(
D3

j

)
=

n1∑
i=1

E

(
(

n2∑
k=1

Xik)
3

)
+

n2∑
j=1

E

(
(

n1∑
r=1

Xjr)
3

)
,

and so,

E (F (G)) =

n1∑
i=1

E

(
n2∑
k=1

X3
ik

)
+ 3

n1∑
i=1

n2∑
k=1

E

X2
ik

 n2∑
t=1
t 6=k

Xit




+

n1∑
i=1

E

 n2∑
k=1

n2∑
t=1
t 6=k

n2∑
s=1

s 6=k,t

XikXitXis

+

n2∑
j=1

E

(
n1∑
r=1

X3
jr

)

+3

n2∑
j=1

n1∑
r=1

E

X2
jr

 n1∑
l=1
l 6=r

Xjl


+

n2∑
j=1

E

 n1∑
r=1

n1∑
l=1
l 6=r

n1∑
m=1
m6=r,l

XjrXjlXjm

 .

Therefore,

E (F (G)) =

n1∑
i=1

n2∑
k=1

E
(
X3

ik

)
+ 3

n1∑
i=1

n2∑
k=1

E
(
X2

ik

) n2∑
t=1
t 6=k

E (Xit)


+

n1∑
i=1

n2∑
k=1

n2∑
t=1
t6=k

n2∑
s=1

s 6=k,t

E (Xik)E (Xit)E (Xis)

+

n2∑
j=1

n1∑
r=1

E
(
X3

jr

)
+ 3

n2∑
j=1

n1∑
r=1

E
(
X2

jr

) n1∑
l=1
l6=r

E (Xjl)


+

n2∑
j=1

n1∑
r=1

n1∑
l=1
l6=r

n1∑
m=1
m6=r,l

E (Xjr)E (Xjl)E (Xjm)

= n1n2p+ 3n1n2(n2 − 1)p2 + n1n2(n2 − 1)(n2 − 2)p3 + n1n2p

+3n1n2(n1 − 1)p2 + n1n2(n1 − 1)(n1 − 2)p3

= pn1n2(p
2(n2 − 1)(n2 − 2) + p2(n1 − 1)(n1 − 2)

+3p(n1 + n2 − 2) + 2),
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and we are done. �

Now, using an algorithmic analysis approach to assess growth rate, we present the following
corollary.

Corollary 2.2. Assume that G ∈ G(n1, n2, p) is a graph of order n, then E (M1(G)) = O
(
n3
)
,

E (M2(G)) = O
(
n4
)
and E (F (G)) = O

(
n4
)
.

Proof. Since n1 + n2 = n, it is easy to see that n1n2 ≤ n2

4 . Hence Theorem 2.1 yields the
result. �

3 Random bipartite graphs G(n1, n2,m)

This section presents explicit formulas for the first Zagreb, and second Zagreb, along with
the forgotten index of a random bipartite graph in G(n1, n2,m). We consider the following
parameters pi’s, i = 1, 2, 3, for three positive integers n1, n2, and m, as follow [17]:

pi =

(
n1n2−i
m−i

)(
n1n2

m

) =
m(m− 1) · · · (m− i+ 1)

(n1n2)((n1n2)− 1) · · · ((n1n2)− i+ 1)
.

Theorem 3.1. If G ∈ G(n1, n2,m) and n1, n2 ≥ 2, then

(a) E (M1(G)) = n1n2(2p1 + p2(n1 + n2 − 2)),

(b) E (M2(G)) = n1n2 (p1 + (n1 + n2 − 2)p2 + (n1 − 1)(n2 − 1)p3).

Furthermore, if n1, n2 ≥ 3, then

(c) E (F (G)) = n1n2((n2 − 1)(n2 − 2)p3 + (n1 − 1)(n1 − 2)p3 +3(n1 + n2 − 2)p2 + 2p1.

Proof. Due to bipartition parts U and W of V (G), where U = {u1, . . . , un1} and W =
{w1, . . . , wn2

}, define the random variables Di’s and Dj ’s, (i = 1, . . . , n1 and j = 1, . . . , n2)
corresponding to the degree of ui’s and wj ’s, respectively. Hence for each 1 ≤ i ≤ n1 and
1 ≤ j ≤ n2, one can see that Di =

∑n2

k=1 Xik and Dj =
∑n1

r=1 Xjr, where Xst is the indicator
random variable corresponding to the edge uswt. Now, we start with the proof of Part (a).

E (M1(G)) = E

∑
ui∈U

D2
i +

∑
wj∈W

D2
j

 =

n1∑
i=1

E
(
D2

i

)
+

n2∑
j=1

E
(
D2

j

)
=

n1∑
i=1

E

(
(

n2∑
k=1

Xik)
2

)
+

n2∑
j=1

E

(
(

n1∑
r=1

Xjr)
2

)

=

n1∑
i=1

E

(
n2∑
k=1

X2
ik

)
+

n1∑
i=1

E

 n2∑
k=1

n2∑
t=1
t 6=k

XikXit


+

n2∑
j=1

E

(
n1∑
r=1

X2
jr

)
+

n2∑
j=1

E

 n1∑
r=1

n1∑
s=1
s 6=r

XjrXjs

 ,
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and so,

E (M1(G)) =

n1∑
i=1

n2∑
k=1

E
(
X2

ik

)
+

n1∑
i=1

n2∑
k=1

n2∑
t=1
t 6=k

E (XikXit)

+

n2∑
i=1

n1∑
r=1

E
(
X2

jr

)
+

n2∑
j=1

n1∑
r=1

n1∑
s=1
s 6=r

E (XjrXjs)

= 2n1n2p1 + n1n2(n1 + n2 − 2)p2.

Now, we are ready to prove the Part (b).

E (M2(G)) = E

 ∑
uiwj∈E(G)

DiDj

 = E

 n1∑
i=1

n2∑
j=1

DiDjXij

 (3)

=

n1∑
i=1

n2∑
j=1

E (DiDjXij) .

Now, for the fixed positive integers i, j, we focus on the term E (DiDjXij) which appeared in
the last equation.

E (DiDjXij) =

n2∑
k=1

n1∑
r=1

E(XikXjrXij) (4)

= E(XijXjiXij) +

n2∑
k=1
k 6=j

E(XikXjiXij)

+

n1∑
r=1
r 6=i

E(XijXjrXij) +

n2∑
k=1
k 6=j

n1∑
r=1
r 6=i

E(XikXjrXij)

= p1 + (n2 − 1)p2 + (n1 − 1)p2 + (n1 − 1)(n2 − 1)p3

= p1 + (n1 + n2 − 2)p2 + (n1 − 1)(n2 − 1)p3.

Due to (3) and (4), the following relations can be obtained:

E (M2(G)) =

n1∑
i=1

n2∑
j=1

E (DiDjXij)

=

n1∑
i=1

n2∑
j=1

(p1 + (n1 + n2 − 2)p2 + (n1 − 1)(n2 − 1)p3)

= n1n2 (p1 + (n1 + n2 − 2)p2 + (n1 − 1)(n2 − 1)p3) ,
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as desired. Finally, we prove the Part (c).

E (F (G)) = E

 ∑
ui∈U(G)

D3
i +

∑
wj∈W (G)

D3
j

 =

n1∑
i=1

E
(
D3

i

)
+

n2∑
j=1

E
(
D3

j

)
=

n1∑
i=1

E

(
(

n2∑
k=1

Xik)
3

)
+

n2∑
j=1

E

(
(

n1∑
r=1

Xjr)
3

)

=

n1∑
i=1

E

(
n2∑
k=1

X3
ik

)
+ 3

n1∑
i=1

n2∑
k=1

E

X2
ik

 n2∑
t=1
t6=k

Xit




+

n1∑
i=1

E

 n2∑
k=1

n2∑
t=1
t 6=k

n2∑
s=1

s 6=k,t

XikXitXis

+

n2∑
j=1

E

(
n1∑
r=1

X3
jr

)

+3

n2∑
j=1

n1∑
r=1

E

X2
jr

 n1∑
l=1
l6=r

Xjl




+

n2∑
j=1

E

 n1∑
r=1

n1∑
l=1
l 6=r

n1∑
m=1
m 6=r,l

XjrXjlXjm

 .

Thus,

E (F (G)) =

n1∑
i=1

n2∑
k=1

E
(
X3

ik

)
+ 3

n1∑
i=1

n2∑
k=1

n2∑
t=1
t 6=k

E(X2
ikXit)

+

n1∑
i=1

n2∑
k=1

n2∑
t=1
t 6=k

n2∑
s=1

s 6=k,t

E(XikXitXis) +

n2∑
j=1

n1∑
r=1

E
(
X3

jr

)

+3

n2∑
j=1

n1∑
r=1

n1∑
l=1
l6=r

E(X2
jrXjl) +

n2∑
j=1

n1∑
r=1

n1∑
l=1
l6=r

n1∑
m=1
m6=r,l

E(XjrXjlXjm)

= n1n2p1 + 3n1n2(n2 − 1)p2 + n1n2(n2 − 1)(n2 − 2)p3

+n1n2p1 + 3n1n2(n1 − 1)p2 + n1n2(n1 − 1)(n1 − 2)p3

= n1n2((n2 − 1)(n2 − 2)p3 + (n1 − 1)(n1 − 2)p3

+3(n1 + n2 − 2)p2 + 2p1),

and the proof is completed. �

Based on Theorem 3.1, we can derive the following corollary that provides the time com-
plexity of the results obtained in this section.

Corollary 3.2. Let G ∈ G(n1, n2, p) and n = n1+n2. Then E (M1(G)) = O
(
n3
)
, E (M2(G)) =

O
(
n4
)
and E (F (G)) = O

(
n4
)
.
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4 Computationally results
In this section, we compare the experimental results obtained from a computer search using
Sage Mathematics Software System [18] with the results presented in this paper. Let n1, n2,m
be positive integers and 0 < p < 1. We generate 10000 random bipartite graphs for each of
G(n1, n2, p) and G(n1, n2,m), where n1, n2,m and p are chosen as specific values. We then
obtain the mean exact values of the first Zagreb, and second Zagreb, along with the forgotten
index, for the generated random bipartite graphs, and in the tables denoted by "mean()".

We proceed by comparing these computed values with the expected values of the correspond-
ing topological indices computed in Theorems 2.1 and 3.1, denoted by "E( )" in the tables. The
comparison results for random graphs in G(10, 20, p) are presented in Table 1. Here, p is taken
as k/10 with k = 1, . . . , 9. For random graphs in G(10, 20,m) with m = 25k, the comparison
results are presented in Table 2, where k is taken as k = 1, . . . , 7.

Table 1: Comparison of Theorem 2.1 and the experimental results for random graphs in
G(n1, n2, p).

G = G(n1, n2, p) mean(M1(G)) E(M1(G))

G(10, 20, 0.1) 95.79440 96
G(10, 20, 0.2) 304.09140 304
G(10, 20, 0.3) 624.34080 624
G(10, 20, 0.4) 1052.95520 1056
G(10, 20, 0.5) 1602.00180 1600
G(10, 20, 0.6) 2258.90600 2256
G(10, 20, 0.7) 3023.25920 3024
G(10, 20, 0.8) 3905.62880 3904
G(10, 20, 0.9) 4895.47280 4896

G = G(n1, n2, p) mean(M2(G)) E(M2(G))

G(10, 20, 0.1) 109.45380 110.20
G(10, 20, 0.2) 540.51570 537.60
G(10, 20, 0.3) 1482.76640 1487.40
G(10, 20, 0.4) 3175.80170 3164.80
G(10, 20, 0.5) 5774.57150 5775.00
G(10, 20, 0.6) 9545.88270 9523.20
G(10, 20, 0.7) 14598.41170 14614.60
G(10, 20, 0.8) 21259.30540 21254.40
G(10, 20, 0.9) 29662.95900 29647.80

G = G(n1, n2, p) mean(F (G)) E(F (G))

G(10, 20, 0.1) 291.01540 290.80
G(10, 20, 0.2) 1411.64780 1414.40
G(10, 20, 0.3) 3877.79180 3867.60
G(10, 20, 0.4) 8154.52580 8147.20
G(10, 20, 0.5) 14748.82880 14750.00
G(10, 20, 0.6) 24120.25860 24172.80
G(10, 20, 0.7) 36965.39440 36912.40
G(10, 20, 0.8) 53497.87100 53465.60
G(10, 20, 0.9) 74367.69320 74329.20
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Table 2: Comparison of Theorem 3.1 and the experimental results for random graphs in
G(n1, n2,m).

G = G(n1, n2,m) mean(M1(G)) E(M1(G))

G(10, 20, 25) 134.41360 134.42211
G(10, 20, 50) 444.61480 444.72362
G(10, 20, 75) 930.48960 930.90452
G(10, 20, 100) 1592.80200 1592.96482
G(10, 20, 125) 2430.77160 2430.90452
G(10, 20, 150) 3444.51440 3444.72362
G(10, 20, 175) 4634.52800 4634.42211

G = G(n1, n2,m) mean(M2(G)) E(M2(G))

G(10, 20, 25) 169.49390 169.31247
G(10, 20, 50) 903.88970 905.09365
G(10, 20, 75) 2612.59220 2614.20740
G(10, 20, 100) 5700.93710 5703.51759
G(10, 20, 125) 10579.45350 10579.88808
G(10, 20, 150) 17650.61520 17650.18273
G(10, 20, 175) 27320.51790 27321.26542

G = G(n1, n2,m) mean(F (G)) E(F (G))

G(10, 20, 25) 447.52940 448.26404
G(10, 20, 50) 2370.35560 2369.80356
G(10, 20, 75) 6746.51820 6749.65738
G(10, 20, 100) 14582.81120 14572.86432
G(10, 20, 125) 26830.17820 26824.46322
G(10, 20, 150) 44497.94940 44489.49292
G(10, 20, 175) 68559.42260 68552.99223

Conclusion

In this paper, we used combinatorial methods and probabilistic techniques to analyze the
expected values of the Zagreb indices for two types of well-known random bipartite graphs
G(n1, n2, p) and G(n1, n2,m). Our analytical results showed that the expected value of the
Zagreb indices of a random bipartite graph is proportional to the vertex partition sizes. Specifi-
cally, we showed that these expected values can be expressed as polynomials in terms of vertices
part sizes, number of vertices and edges and the probability p. We also compared our theo-
retical predictions with numerical simulations on randomly generated bipartite graphs which
confirmed the validity of our theoretical predictions. Our results shed light on the average
degree of bipartite networks and can be used to estimate their properties in practical scenarios.
Future work may focus on extending our analysis to more general classes of bipartite graphs or
exploring other topological measures of interest.
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