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Abstract

We investigate the index I;(G) =
> vwer(q) /(da(v),da(w)) of a graph G, where f is a
symmetric function of two variables satisfying certain condi-
tions, F(G) is the edge set of G, and dg(v) and dg(w) are the
degrees of vertices v and w in G, respectively. Those conditions
are satisfied by functions that can be used to define the general
sum-connectivity index x,, general Randi¢ index R,, general
reduced second Zagreb index GRM, for some a € R, general
Sombor index SO, ;, general augmented Zagreb index AZI,
and by one other generalization M, ; for some a,b € R. The
general augmented Zagreb index is a new index defined in this
paper.

We obtain a sharp upper bound on Iy for graphs with given
order and connectivity, and a sharp lower bound on I; for
2-connected graphs with given order. Our upper bound holds
for M, and SO, where a,b > 1; x, and R, where a > 1; and
GRM, where a > —1. Our lower bound holds for M, ; where
a > 0and b > —a; SOqp where a,b > 0 or a,b < 0; AZI,
where a > —2 and b > 0; x, and R, where a > 0; and GRM,
where a > —2.

© 2023 University of Kashan Press. All rights reserved.

1 Introduction

Let V(G) and E(G) be the vertex set and the edge set of a connected graph G. The order of G
is the number of vertices in V(G). The degree of v € V(G), denoted by d¢(v), is the number
of vertices adjacent to v. The vertex connectivity or just the connectivity of a connected graph
G is the smallest number of vertices whose removal from G disconnects G. For k > 1, a graph
is k-connected if its connectivity is at least k.
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For a graph G, we study degree-based indices defined as

G = > flde(v),da(w)),

vweE(G)

where f is a real-valued symmetric function of two variables. If f(dg(v),dg(w)) = [da(v) +
de(w)]* where a € R, we obtain the general sum-connectivity index

Xa(G) = > [da(v)+da(w)]",

vweE(G)

of G defined by Zhou and Trinajstié¢ [1]. From x,(G) we obtain the reciprocal sum-connectivity
index if a = %, first Zagreb index if a = 1 and first hyper-Zagreb index if a = 2.
If f(dg(v),de(w)) = [dg(v)dg(w)]* where a € R, we obtain the general Randi¢ index

Ra(G) = Z [dG(U)dG(w)]av

vweE(G)

of a graph G which was first investigated by Bollobas and Erdés [2|. From R,(G) we get the
reciprocal Randié¢ index if a = %, the second Zagreb index if a = 1, and the second hyper-Zagreb
index if a = 2.

We can generalize the general Randi¢ index and general sum-connectivity index even more
by using f(dg(v),dg(w)) = [dg(v)de(w)]®[de(v) + da(w)]® where a,b € R. We obtain the
generalization

Moy(G)= > [da(v)d(w)]*[da(v) + da(w)]’,
vweE(G)

(see [3]). From M, ;(G) we get the third redefined Zagreb index also called second Gourava
index (see [4]) if @ = 1 and b = 1, second redefined Zagreb index also known as inverse sum
indeg index if a = 1 and b = —1, second hyper-Gourava index (see [5]) if @ = 2 and b = 2,
general Randi¢ index if b = 0 and general sum-connectivity index if a = 0.

We also consider the general Sombor index of a graph G,

S0ap(G) = Y ([da)* + [da(w)])’,

vweE(G)

defined for a,b € R; see [6]. We obtain SO, (G) from I;(G) if f(dg(v),dg(w)) = ([da(v)]* +
[de(w)]")?. From SO, ;(G) we get the classical Sombor index if @ = 2 and b = 1 (see [7]),
forgotten index if @ = 2 and b = 1, and general sum-connectivity index if a = 1.

If f(dg(v),dg(w)) = (dg(v) + a)(dg(w) + a) where a € R, we obtain the general reduced
second Zagreb index

GRM,(G) = Y (do(v) + a)(da(w) + a),
vweE(G)

of a graph G from I;(G). This index was defined in [8]. From GRM,(G) we get the second
Zagreb index if a = 0 and reduced second Zagreb index if a = —1.
For a,b € R where a > —3, we introduce the general augmented Zagreb index

B de(v)dg(w) ’
AZI b (G) = W;:(g) (dG(v) +da(w) + a) ’
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b
of a graph G. We obtain AZI, ;(G) from I¢(G) if f(dg(v),de(w)) = (%) . We
call it “general augmented Zagreb index”, because for a = —2 and b = 3, we get the classical
augmented Zagreb index.

Indices are usually studied for connected graphs G of order n > 3. The reason for defining
the general augmented Zagreb index for a > —3 is that dg(v) + dg(w) is 3 if G contains an
edge vw incident with vertices having degrees 1 and 2. In that case, if a = —3, we would have
dg(v) + dg(w) + a = 0 in the denominator of %.

Indices of graphs are investigated due to their extensive applications, especially in chemistry.
Indices using a degree-based edge-weight function were investigated by Hu et al. [9], who
presented extremal results for graphs with given order and size. Degree-based indices called
bond incident degree indices were investigated for example in [10-14]. Ali and Dimitrov [10]
studied graphs with a small number of cycles, Ali et al. [11] considered graphs with given order
and size, Liu et al. [12] studied complex structures in drugs, Ye et al. [13] investigated polygonal
cacti and Zhou et al. [14] studied graphs with a given number of pendant vertices. General
degree-based indices were studied also in [15-22] and some related indices in [23, 24]. Chen and
Guo [25] obtained bipartite graphs with prescribed connectivity having the maximum Zagreb
indices. Tomescu, Arshad, and Jamil [26] presented the graph of given order and connectivity
having the maximum y, and R, for a > 1, and the 2-connected graph having the minimum y,
and R, for a > 0.

For a function f satisfying certain conditions, we obtain a sharp upper bound on Iy for
graphs with given order and connectivity, and a sharp lower bound on Iy for 2-connected
graphs with given order. Our upper bound holds for M, ; and SO, ; where a,b > 1; x, and
R, where a > 1; and GRM, where a > —1. Our lower bound holds for M, ; where a > 0 and
b > —a; SO, where a,b > 0 or a,b < 0; AZI,, where a > —2 and b > 0; x, and R, where
a > 0; and GRM, where a > —2.

2 Preliminary results

We investigate degree-based indices with the help of Definition 2.1.

Definition 2.1. A symmetric function f(z,y) of two variables « and y having property @ is
any function satisfying the following conditions:

(i) f(z1,y1) < f(z2,y2) for 2 <1 < 29 and 2 < y; < ys.

There are many functions that have the property Q). In Lemma 2.2 we present those ones
which can be used to obtain some well-known indices. In the proof of Lemma 2.2, we consider
the functions (zy)%(z+y)® and (z%+y?)® for x,y > 1, because we use those values in Lemma 2.5.

Lemma 2.2. The following functions of two variables x and y have property Q:
o (zy)*(x+y)° fora>0,b> —a,
[ ]

2% +y»)® for a,b>0 ora,b <0,
y

)bforaz—Q,bZO,

(
(r+my+a
° (

x+a)(ly+a) fora> 2.
Proof. We show that f(z,y) = (zy)*(x+y)® has property Q for a > 0 and b > —a. Let z,y > 1.
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(1) We get (zy)*(z +y)® > 0.

(ii) Let b = ¢ — a where a,c > 0. Then

afg;’ Y afay)y(o + ) + (¢ - a)(ay) (@ + )0
=a(zy)* Nz + ) y(@ +y) — zy] + clay)* (@ +y) 0
= ay’(zy)* Nz +y) " +clay)(z +y) !
> 0.

Since f(z,y) is symmetric, we get %Z’y) > 0. Thus, for 1 <z; <29 and 1 < y; < yo,
we have f(z1,y1) < f(z2,92).

Let f(x,y) = (z* + y*)® where both a,b > 0 or both a,b < 0. Let 2,y > 1.

(i) We obtain (z® + y*)® > 0.

(ii) We get
af(azj y) — b(iﬂa + y“)bila:rafl 2 0,
since (z¢ +y?)*~1 > 0 and 27! > 0. Similarly, %ﬁ’y) > 0, so part (ii) holds.

We show that f(z,y) = (zfnyra)b has property @ for a > —2 and b > 0. Let =,y > 2.

. Ty b
(i) We get zy >4 and & +y +a > 2, thus (;:557)" > 0.

(ii) We obtain

b—1 _
af(x?y):b( zy ) yly+a) by +a)
Oz r+y+ta (x+y+a)? (z4+y+a)ptt =7
since b>0,y+a>0and x,y,x+y+a > 0.

The function f(x,y) = (z + a)(y + a) for a > —2 has property Q, since for x,y > 2:

(i) (z+a)(y+a)>0 and (i) w=y+a>0.

|
Let us present a few functions, which are special cases of (zy)%(z+y)? for a > 0 and b > —a.

Corollary 2.3. The functions zy(z + y), (zy)?(x + y)?
have property Q.

sty (@y)® and (x4 y)* fora =0

Proof. By Lemma 2.2, (zy)®(x 4 y)® has property @ for a > 0 and b > —a.
e Ifa=1and b=1, we get zy(z +y).
o If a=2and b=2, we get (zy)?(x + y)?.
e Ifa=1and b= —1, we get %

o If b=0, we get (zy)® for a > 0.
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o If a =0, we get (x+y)® for b > 0.
|

The first two conditions of Definitions 2.1 and 2.4 are almost equal. In Definition 2.1 we
consider f(x,y) for &,y > 2. In Definition 2.4 we consider f(z,y) for z,y > 1. Moreover, in
Definition 2.4 we have a new third condition.

Definition 2.4. A symmetric function f(z,y) of two variables « and y having property P is
any function satisfying the following conditions:

(i) f(z1,y1) < f(xe,y2) for 1 <z1 < g and 1 < y; < yo,

(i) g(z1,91) = flxr + ey + ) = f(z) < f(re + e y2 + ) — f(22,92) = g(x2,y2) for
1<z <w9,1<y; <ypande,d >0.

Since we have an additional condition in Definition 2.4, there are functions that have prop-
erty @, but not property P.

Lemma 2.5. The following functions of two variables x and y have property P:
o (zy)*(x +y)" and (z* +y*)® for a,b>1,
o (z+y)* and (xy)® for a > 1,
o (z+a)(y+a) fora>—1.
Proof. Let f(z,y) = (x + a)(y + a) where a > —1. Let x,y > 1.
(i) We have (z +a)(y +a) > 0.
(il) We get % =y + a > 0. Similarly, %ﬁ;y) > 0.
(iii) For
9(x,y) = fle+ey+d) = fley) = @+cta)ly+ +a) = (v+a)(y +a),

we have

%:(wc%a)%w@:c’z&

The function f(z,y) is symmetric, thus g(z,y) is symmetric. Therefore %‘Ty’y) > 0.

Thus, for 1 <z < x9, 1 <y; <yo and ¢, > 0, we have g(z1,y1) = f(z1 + ¢, 91 + ) —
flxi,y1) < floa +c,y2 + ) = f2,42) = g(22,y2)-

Hence, f(x,y) = (z + a)(y + a) has property P for a > —1.

Conditions (i) and (ii) of Definition 2.4 for the functions (z + y®)® and (xy)*(z + y)°
(containing special cases (z 4+ y)® and (zy)®) are proved in Lemma 2.2. Condition (iii) for
(x +19)?, (vy)® and (zy)*(z + y)’, where a,b > 1, was proved in [20]. It remains to show that
(2% + y*)? satisfies condition (iii).

Let f(z,y) = (z* + y*)® where a,b > 1. We consider

9z, y) = fl+c,y+) = fla,y) = g+ + [y + 1Y) — (a* +y*)".
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We obtain

9g(z,y)

ox
since for a,b > 1, we have [z + ]! > 2971 [z 4+ (]* > 29, [y + ]* > y® and ([z + c]* + [y +
A1)t > (2 + y*)*~L. Similarly, %ﬁ/’y) > 0. So condition (iii) of Definition 2.4 is satisfied
by the function (z® + y®)°. Hence, (% + y*)® has property P for a,b > 1. [ ]

_ ab([x_’_c]a + [y+ Cl]a)bfl[x_’_c]afl o ab(xa _’_ya)bflxafl Z 07

Let us compare Iy of two graphs that differ only by one edge. We use Lemma 2.6 in the
proofs of Theorems 3.1 and 4.2.

Lemma 2.6. Let G be a connected/2-connected graph containing two non-adjacent vertices vy
and vy. Then for a function f(x,y) satisfying conditions (i) and (ii) of Definition 2.4/Defini-
tion 2.1, we get I5(GQ) < If(G + vivg).

Proof. For connected graphs and a function with slightly different condition (ii) in Definition 2.4,
Lemma 2.6 was proved in [20]. The proof for our function introduced in Definition 2.4 is
identical. Let us consider Lemma 2.6 for 2-connected graphs. Note that in Definition 2.4, we
use f(z,y) for z,y > 1, but in Definition 2.1, we use f(z,y) for z,y > 2.

If G is 2-connected, then also G + v1vy is 2-connected. 2-connected graphs do not contain
vertices of degree 1, therefore for any vertex v € V(G), we get dgiv,v, (V) > da(v) > 2. Then,
similarly as in [20], it can be easily shown that I;(G) < I;(G + v1v2). [ |

3 Upper bound for graphs with given connectivity

For two graphs G; and G3, the union G; U G5 and the join G; + G2 have the vertex set
V(G1) UV(G2). The edge set of G1 U G4 is E(G1) U E(G2). The edge set of Gy + G2 consists
of E(G1), E(G2), and every vertex of GG is adjacent to every vertex of Ga. Let us denote the
complete graph of order n by K,. Note that 1 < k < n — 2 for the connectivity x of any
connected graph of order n except for K.

Theorem 3.1. Let G be any graph with n vertices and connectivity K, where 1 < x <n—2. If
f has property P, then

R

@< ("5 w22+ (§) - 0=
+rn—rk—1f(n—1,n—2)+kf(n—1,K).
with equality if and only if G is (Kp—px—1 U K1) + K.

Proof. Among graphs with n vertices and connectivity s, let G’ be any graph with the largest
I;. Thus there is a set S C V(G’) with x vertices, such that G’ — S is disconnected. So, it is
possible to divide the vertices in V(G’) \ S into two sets S; and So, such that no vertex in Sy
is adjacent to a vertex in S>. The function f has property P, thus by Lemma, 2.6, I increases
with the addition of edges. So any two vertices in S; are adjacent, any two vertices in Sy are
adjacent and every vertex of S has degree n — 1 in G'. Let |S1| = ny and |S2| = ny. Without
loss of generality, we can assume that n; > ny > 1. We obtain n; +ns = n — k, so G’ is
(Kn, UK,,) + K. Let us prove by contradiction that ny = 1.

Suppose that ng > 2 (where n; > ns). Let us compare Iy of G' = (K,, UK,,) + K, and
G" =(K;, 41 UKy,—1) + K. For every z € S, we have

dG/(Z) =dgr (Z) =n-—1.
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In G’, we have
dg'(v) =k +n1 —1 and dg/(v') =k +ng —1,

for every v € V(K,,,) and every v’ € V(K,,). In G”, we have
dG// (U)) =K+ ny and dG//(’LU/) =K+ Ny — 2,
for every w € V(K,,,+1) and every w' € V(K,,_1). We obtain
1(6") - I;(&)
=k(nm+1)fin—1,n1+k)—kni f(n—1,n1 +Kk—1)
+rmne—1) f(n—Lno+k—2)—knas f(n—1L,ng+r—1)
+1
+ <n12 )f(nl—&—/{,nl—i—/f)— <7121> fri+r—1,n1+rK—1)
2 2
=kfn—1n+k)—kfln—1ny+rK—2)
+en[f(n—1,n1+k)— f(n—1,n1 +K—1)]
—kna[fln—=1,ne+Kk—1)— f(n—1,n2+ Kk — 2)]

+<n2_1> flng+k—2n0+kK—2) — <n2> flno+rk—1,ny+k—1)

. {nl(n;l)ﬂLm} f(nﬁmnﬁﬁ)_Wﬂnﬁn—l,nﬁn—n
+ ["Q(nz_l)_(nz—l)] fno+Kk—2,n04+k—2)
_%ﬂnﬁﬁ_l,nzm—n

=&[f(n—1n1+k)— f(n—1ny+r—2)]

+ k(g —na)[f(n—1,n1+k)— fln—1,n1 + Kk —1)]
+eng[f(n—1,n1+k)— f(n—1,n1 + Kk —1)]
—kna[fln=1,ne+Kx—1)— f(n—1,n2+ K — 2)]

+ nl(nl — 1) — 77,2(712 — 1)

[f(ny +rK,n1+k)—fni+k—1,n +Kk—1)]

2
+%[ﬂn1 +r,n1 + k) — f(n1+K—1,n1 + K —1)]
n2(n2—1)

_f[f(nQ—’—K/_lan"’_K/_1)_f(n2+/€—2,n2+/€—2)]
+ (ne = D[f(n1 +K,n1 +K) — f(ne+K£—2,n2 + £ — 2)]

+(n1 —ng +1)f(n1 + Kk,n1 + k).

Since ny > ng > 2, k > 1 and the function f has property P, from part (ii) of Definition 2.1,
we obtain

fln=1n+k)>f(n—1Lne+k—2), flnh—1,nm +k)> f(n—1,n +r—1),

flri+ ki +k) > flni+r—=1n+r-1), f(ni+rn+K) > flne+k—2,n2+£K—2).
By Definition 2.1 (i), we have f(ny + k,n1 + &) > 0. By Definition 2.1 (iii), we have

fln=1n+k)—fn—=1m+r—-1)>f(n—1,na+k—1)— f(n—1,na+rk—2),
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and

f(nl—i_ﬁanl—"_"{)_f(nl—"_"{_]-vnl—’—"{_]‘)
> fna+k—1ng+k—1)— f(na+Kk—2,n2+r—2).

Thus I;(G") — I;(G') > 0, so I;(G") > I;(G’), which means that G’ does not have the largest
Iy. We have a contradiction.
Thus ng =1. Thenny =n—rk—1,s0 G' is (K,—,—1 UK;) + K, and

n—k-—1

It (Kp—w—1 UK )+ Ky) = ( 5 )f(n—27n—2)+ (g)f(n—l,n—l)
+rn—rk—=1)f(n—=1,n—2)+kf(n—1,K).

4 Lower bound for 2-connected graphs

A proper ear decomposition of G is a decomposition of G into a sequence of ears Py, Py, ..., Pk,
where k > 1, Py is a cycle and P, for 1 < ¢ < k is a path whose terminal vertices are in
V(Py)U---UV(P;_1) and internal vertices (if any) are not in V(Py)U--- UV (P;_1). Whitney
[27] gave a well-known characterization of 2-connected graphs.

Lemma 4.1. A graph is 2-connected if and only if it has a proper ear decomposition.
We use Lemma 4.1 to obtain a lower bound on I; for 2-connected graphs.

Theorem 4.2. Let G be any 2-connected graph with n vertices, where n > 3. If f has property
Q, then
If(G) 2 nf(2v 2)3

with equality if and only if G is the cycle C,,.

Proof. For n = 3, we have only one 2-connected graph which is C3, so Theorem 4.2 holds for
n = 3. We prove Theorem 4.2 by induction on n. Assume that n > 4 and for any graph G of
order m < n, we have It(G) > mf(2,2) with equality if and only if G is C,,.

Let H be a graph with the smallest Iy among 2-connected graphs with n vertices except
for C,. From Lemma 4.1, we know that H has a proper ear decomposition Py, Py, ..., P.
Since H is not a cycle, we have £k > 1. Let u and v be the terminal vertices of Py. So
u,v € V(Py)U---UV(Py_1). Let r be the number of internal vertices of P,. We have r > 0.
Let H' be obtained from H by the removal of all r internal vertices of Pj and all r + 1 edges
of P,. Then H' is a 2-connected graph containing the ears Py, Pi,..., Py,_1. The order of H'
is n — r. We consider the cases r =0 and r > 1.

Case 1: r = 0.

Then Py contains only one edge uv. We have V(H') = V(H) and E(H') = E(H) \ {uv}.
So, the order of H' is n. By Lemma 2.6, I;(H') < I;(H).

If k£ > 2, then H' is not Cy,, but the inequality I;(H') < I;(H) contradicts the fact that H
is a graph with the smallest Iy among 2-connected graphs with n vertices except for Cj,.

If £k =1, then H' is Py which is Cy, so I§(C,) < If(H) which means that C,, is the
2-connected graph of order n with the smallest Iy. Hence, the proof of the case r = 0 is
complete.
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Case 2: r > 1.

If wv € E(H), then uwv € E(P;) for some ¢ € {0,1,...,k — 1}. Let us construct P/ with

K]
V(P!)=V(P)UV(P,) and E(P]) = E(P;) UE(P) \ {uv}. Let P/ contain only one edge uv.
Clearly, when we replace P; and Py in Py, Py,..., P, by P/ and P}, we again obtain a proper

K3
ear decomposition, where Py, contains only one edge and such situation was solved in Case 1.

Therefore, we can assume that uv ¢ E(H). Let Ng:/(u) = {u1,...,us} and Ngy/(v) =
{v1,...,v:}. Note that s,¢ > 2. By the induction hypothesis, we have I;(H') > (n —r)f(2,2).
Thus

15 (H) = ff(H’) (r=1)f(2,2) + f(dr(u),2) + f(du(v),2)

+Z (dr (), dp (ui) = f(dp(w) =1, dp (u;)]

4+ Z dH dH Uz)) - f(dH(U) - 1’dH(Ui>)]
> (n —1)f(2,2) + f(du(u),2) + f(du(v),2)
+Z Fldm (), dp (ui)) — F(dp(u) — 1, dp (us))]

+Z (du(v),dr(vi)) = f(du(v) = 1,dm(vi))].

Since dg(u) > 3, dg(v) > 3 and the function f has property @, from part (ii) of Definition 2.1,
we obtain

fldu(u),2) = f(2,2), f(du(v),2) = f(2,2),
fdu(u), du(ui)) = f(du(uw) = 1,du(uw)) and f(dp (v), du(vi)) = f(du(v) =1, du(vi)).
By Definition 2.1 (i), we have f(2,2) > 0. Thus
I7(H) = (n+1)f(2,2) > nf(2,2) = I;(Cn),

which means that C), is the 2-connected graph of order n with the smallest I;. |

5 Conclusion

In Theorem 3.1, we presented a bound on I, where f is a function having property P introduced
in Definition 2.4. In Lemma 2.5, we obtained several functions having property P. Hence, by
Theorem 3.1 and Lemma 2.5, we get Corollary 5.1.

Corollary 5.1. Among graphs with n vertices and connectivity x, where 1 < Kk < n — 2,
(Kpn—w-1UK7) + K, is the unique graph with the mazimum

o Myyp and SO for a,b>1,
e x, and R, fora>1,

e GRM, fora> —1.
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So, Corollary 5.1 holds also for the following special cases of xq, Rq, Mg, and SOqp: first
Zagreb index x7, first hyper-Zagreb index x», second Zagreb index R;, second hyper-Zagreb
index Ry, second Gourava index M 1, second hyper-Gourava index Mo and forgotten index
S5031.

By Theorem 4.2 and Lemma 2.2, we obtain Corollary 5.2.

Corollary 5.2. Among 2-connected graphs with n vertices, where n > 3, the cycle C,, is the
unique graph with the minimum

o Myyp fora>0,b> —a,

SOqp for a,b>0 ora,b<0,

AZl,p fora>—-2,b>0,
e x, and R, fora >0,
e GRM, fora> —2.

All the indices covered by Corollary 5.1 are covered also by Corollary 5.2. However, Corol-
lary 5.2 holds for a larger number of indices. The following indices are special cases of general
indices presented in Corollary 5.2, but not special cases of general indices given in Corollary 5.1:
inverse sum indeg index M 1, Sombor index SO, 1 augmented Zagreb index AZI_ 3, recip-
rocal sum-connectivity index x 1 reciprocal Randié¢ index R 1 and reduced second Zagreb index
GRM_,.
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