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Abstract

Let G = (V, E) be a simple graph with vertex set V and
edge set E. The Sombor index of the graph G is a degree-based
topological index, defined as

SO(G) =
∑
uv∈E

√
d (u)

2
+ d(v)

2
,

in which d(x) is the degree of the vertex x. In this paper,
we introduce a new topological index called the entire Som-
bor index of a graph which is defined as the sum of the terms√
d (x)

2
+ d(y)

2 where x is either adjacent or incident to y and
x, y ∈ V ∪ E. We obtain exact values of this new topological
index in some graph families. Some important properties of this
index are obtained.

c© 2023 University of Kashan Press. All rights reserved

1 Introduction
Gutman defined a new vertex degree-based topological index, named the Sombor index, and
defined for a graph G as follows

SO(G) =
∑
uv∈E

√
d (u)

2
+ d(v)

2
,

where d(u) and d(v) denote the degree of vertices u and v in G , respectively [1]. Other versions
of the Sombor index such as reduced Sombor index, average Sombor index, general Sombor
index, modified Sombor index, delta Sombor index and reverse Sombor index are introduced
and studied in [1–9].

In molecular structures there exist relations between the atoms of a molecule and between
atoms and bonds. Therefore, in some topological indices such as entire Zagreb indices [10], entire
Randic index [11] and entire forgotten topological index [12] are considered into account the
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relations between the edges and vertices in addition to the relations between vertices. motivated
by these topological indices and the Sombor index, we introduce a new topological index named
the entire Sombor index. We investigate and publish some fundamental properties of it. Also,
we compute the entire Sombor index for some graph families. Finally, we obtain the sharp
bounds for the entire Somber index of a graph G.

Let G = (V,E) be a simple graph with vertex set V (G) = {v1, . . . , vn} and the edge set
E(G) = {e1, . . . , em}. The set NG(u) = {v ∈ V |uv ∈ E} is called the neighborhood of vertex
u ∈ V in graph G. The number of edges incident to vertex u in G is denoted degG(u) = d(u).
The isolated vertex and pendant vertex are the vertices with degrees 0 and 1 in graph G,
respectively. The minimum degree and the maximum degree of G are denoted by δ and ∆,
respectively. The edge degree d(e) of the edge e = uv is defined as d(e) = d(u) + d(v)− 2. We
denote the vertex x incident to the edge y in G by x ∼ y.

The first and second Zagreb indices are two of the most useful topological graph indices,
denoted by M1(G) and M2(G) and define as [13]

M1 (G) =
∑
u∈V

d(u)
2
, M2 (G) =

∑
uv∈V

d (u) d (v).

In [14], the reformulated first Zagreb index is defined as RM1 (G) =
∑
e∈E d(e)

2
. Furtula and

Gutman introduced in [15] the forgotten topological index and defined as

F (G) =
∑
u∈V

d(u)
3

=
∑
uv∈E

(
d(u)

2
+ d(v)

2
)
,

and the reformulated forgotten index is defined as EF (G) =
∑
e∈E d(e)

3[16]. Recall that
reformulating a topological index of graph is related to computing this index ofthe line graph
of G. The line graph L(G) of G is the graph that each vertex of it represents an edge of G
and two vertices of L(G) are adjacent if and only if their corresponding edges are incident in
G. Throughout this paper, Kn , Cn and Pn denote a complete graph, the cycle and the path
of order n , respectively.

2 Entire Sombor index for certain graphs

In this section, we propose a new topological index called the entire Sombor index. We obtain
the exact values of the entire Sombor index for certain graphs.

Definition 2.1. For a graph G = (V,E), the entire Sombor index is defined by

SOε (G) =
∑

{x, y}∈B(G)

√
d (x)

2
+ d(y)

2
, (1)

where B(G) is the set of all subsets of two members {x, y} ⊆ V (G) ∪ E(G) such that x and y
are adjacent or incident to each other.
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Figure 1: The graph G with vertex set {v1, v2, v3, v4} and edge set {e1, e2, e3, e4}.

Example 2.2. Let G be graph shown in Figure 1. We compute the entire Sombor index of G.

SOε(G) =
∑

{x, y}∈B(G)

√
d (x)

2
+ d(y)

2

=
∑

xy∈E(G)

√
d (x)

2
+ d(y)

2
+

∑
xy∈E(L(G))

√
d (x)

2
+ d(y)

2
+
∑
x∼y

√
d (x)

2
+ d(y)

2

=

√
d (v1)

2
+ d(v2)

2
+

√
d (v2)

2
+ d(v3)

2
+

√
d (v2)

2
+ d(v4)

2
+

√
d (v3)

2
+ d(v4)

2

=

√
d (e1)

2
+ d(e2)

2
+

√
d (e1)

2
+ d(e4)

2
+

√
d (e2)

2
+ d(e4)

2
+

√
d (e2)

2
+ d(e3)

2

=

√
d (e3)

2
+ d(e4)

2
+

√
d (v1)

2
+ d(e1)

2
+

√
d (v2)

2
+ d(e1)

2
+

√
d (v2)

2
+ d(e4)

2

=

√
d (v2)

2
+ d(e2)

2
+

√
d (v3)

2
+ d(e3)

2
+

√
d (v3)

2
+ d(e2)

2
+

√
d (v4)

2
+ d(e3)

2

=

√
d (v4)

2
+ d(e4)

2
=
√

10 + 9
√

13 + 15
√

2 +
√

5.

Observation 2.3. According to Definition 2.1 and the definition of the Sombor index, the
entire Sombor index can be expressed in terms of the Sombor index of G and the Sombor index
of the line graph G as follows

SOε(G) =
∑

{x, y}∈B(G)

√
d (x)

2
+ d(y)

2

=
∑

xy∈E(G)

√
d (x)

2
+ d(y)

2
+

∑
xy∈E(L(G))

√
d (x)

2
+ d(y)

2
+
∑
x∼y

√
d (x)

2
+ d(y)

2

= SO (G) + SO (L (G)) +
∑

u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2
.

Therefore, the expression (1) is equivalent to

SOε (G) = SO (G) + SO (L (G)) +
∑

u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2
. (2)
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Now we compute the entire Sombor index for some families of graphs. First, we recall some
results that are used in this paper.

Lemma 2.4. [17]

i. If G is k-regular graph of order n, then SO (L (G)) =
√

2nk(k − 1)
2.

ii. If Cn is a cycle of order n, then SO (L (Cn)) = 2
√

2n.

iii. If Knis a complete graph of order n, then SO (L (Kn)) =
√

2n (n− 1) (n− 2)
2.

iv. If Kp, q is a complete bipartite graph with p+q vertices and pq edges, then SO (L (Kp,q)) =√
2
2 pq(p+ q − 2)

2
.

Proposition 2.5. Let G be a k-regular graph of order n. Then

SOε (G) =
nk

2

(
k
√

2 + 2
√

2(k − 1)
2

+ 2

√
k2 + 4(k − 1)

2

)
.

Proof. Let G be a k-regular graph of order n and m = nk
2 edges. Since the line graph L(G) of

G is a 2(k − 1)-regular graph with m vertices and m′ = nk
2 (k − 1). Using the expression (2)

and Lemma 2.4 (i) we have

SOε (G) = SO (G) + SO (L (G)) +
∑

u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d (uv)

2

= mk
√

2 + nk
√

2(k − 1)
2

+ nk

√
k2 + (2k − 2)

2

= k

(
nk

2

)√
2 + nk

√
2(k − 1)

2
+ nk

√
k2 + (2k − 2)

2

=
nk

2

(
k
√

2 + 2
√

2(k − 1)
2

+ 2

√
k2 + (2k − 2)

2

)
.

�

Proposition 2.6. For a complete bipartite graph Kp,q

SOε (Kp,q) = pq

(√
p2 + q2 +

√
2

2
(p+ q − 2)

2
+

√
q2 + (p+ q − 2)

2
+

√
p2 + (p+ q − 2)

2

)
.

Proof. Using the expression (2) and Lemma 2.4 (iv), we have

SOε (Kp,q) = SO (Kp,q) + SO (L (Kp,q)) +
∑

u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2

= pq
√
p2 + q2 +

√
2

2
pq(p+ q − 2)

2
+ pq

(√
q2 + (p+ q − 2)

2
+

√
p2 + (p+ q − 2)

2

)
= pq

(√
p2 + q2 +

√
2

2
(p+ q − 2)

2
+

√
q2 + (p+ q − 2)

2
+

√
p2 + (p+ q − 2)

2

)
.

�
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The following results are obtained directly from Proposition 2.5.

Corollary 2.7. For star graph Sn of order n ≥ 3,

SOε (Sn) = (n− 1)

(√
(n− 1)

2
+ 1 +

√
2

2
(n− 2)

2
+

√
(n− 1)

2
+ (n− 2)

2
+

√
1 + (n− 2)

2

)
.

Proposition 2.8. Let Kn, Cn and Pn be the complete graph, the cycle graph and the path
graph of order n, respectively.

i. SOε (Kn) = n(n−1)
2

(√
2 (n− 1) + 2

√
2(n− 2)

2
+ 2

√
5(n− 2)

2
+ (2n− 3)

)
.

ii. SOε (Cn) = 8
√

2n.

iii. SOε (Pn) = 6
√

5 + 8(n− 3)
√

2.

Proof. i. By applying Lemma 2.4 (iii), we get

SOε (Kn) = SO (Kn) + SO (L (Kn)) +
∑

u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2

=
n(n− 1)

2

2

√
2 +
√

2n(n− 1)(n− 2)
2

+ n(n− 1)

√
(n− 1)

2
+ 4(n− 2)

2

=
n (n− 1)

2

(√
2 (n− 1) + 2

√
2(n− 2)

2
+ 2

√
(n− 1)

2
+ 4(n− 2)

2

)
.

ii. Since the line graph Cn is the cycle Cn, using Lemma 2.4 (ii) we get

SOε (Cn) = SO (Cn) + SO (L (Cn)) +
∑

u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2

= 2
√

2n+ 2
√

2n+ 2n
√

22 + 22 = 8
√

2n.

iii. Since the line graph Pn is the path Pn−1, we get

SOε (Pn) = SO (Pn) + SO (L (Pn)) +
∑

u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2

= 2
√

5 + (2n− 6)
√

2 + 2
√

5 + (2n− 8)
√

2 +
∑

u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2
.

Since d(v1) = d(vn) = d(e1) = d(en−1) = 1 and d(vi) = d(ej) = 2 for 2 ≤ i ≤ n − 1 and
2 ≤ j ≤ n− 2, we get∑
u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2
= 2

√
2 + 2

√
5 +

√
d (v2)

2
+ d(e2)

2
+

√
d (vn−1)

2
+ d(en−2)

2

+ 2
∑

u∈V (Pn)\{v1, v2, vn−1, vn}

√
22 + 22

= 2
√

2 + 2
√

5 + 4
√

2 + 4(n− 4)
√

2

= 6
√

2 + 2
√

5 + 4 (n− 4)
√

2.
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Therefore, we have

SOε (Pn) = 2
√

5 + (2n− 6)
√

2 + 2
√

5 + (2n− 8)
√

2 +
∑

u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2

= 4
√

5 + 2 (2n− 8)
√

2 + 2
√

2 + 6
√

2 + 2
√

5 + 4 (n− 4)
√

2

= 6
√

5 + 8
√

2 + 4 (n− 4)
√

2 + 4 (n− 4)
√

2

= 6
√

5 + 8 (n− 3)
√

2.

�

3 Properties of the entire Sombor index of graphs

In this section, we investigate some mathematical properties of the entire Sombor index of a
graph. We first study a graph G for the removal of any arbitrary edge or vertex. To do this,
we need the following known results.

Lemma 3.1. [1] If G is a connected graph with n vertices, then SO(Pn) ≤ SO(G) ≤ SO(Kn),
with equality if and only if G ∼= Pn and G ∼= Kn.

Lemma 3.2. [1] If T is a tree with n vertices, then SO(Pn) ≤ SO(T ) ≤ SO(Sn), with equalities
if and only if T ∼= Pn and T ∼= Sn.

Lemma 3.3. [18] For any graph G with m ≥ 1 edges, SO(G) ≤
√
mF (G).

At first, we investigate the effects on SO(G) when SOε (G) is changed by removing a vertex
and an edge of G.

Theorem 3.4. Let G = (V,E) be a graph with the minimum degree δ ≥ 1. For any arbitrary
edge e = uv ∈ E

SOε (G−e)<
{
SOε (G)−

√
2 (α+ 2) if δ ≥ 2,

SOε (G)−
√

2 if δ = 1,

where α = 4δ2−5δ+2.

Proof. We consider graph G−e obtained from deleting edge e = uv of G with the entire Sombor
index SOε (G− e). So, we add the edge e = uv to the graph G − e. Suppose that δ ≥ 1 and
without loss of generality, we suppose that d(u) ≥ d(v) and we have d(e) = d(u) + d(v) − 2 ≥
2δ − 2 for any e ∈ E. We study two cases.
Case 1. Suppose that δ ≥ 2. In this case, for the edge e = xy, d(e) ≥ {d(x), d(y)}. Therefore,
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using the expression (2) we get

SOε (G) > SOε (G− e) +

√
d(u)

2
+ d(v)

2
+

√
d(u)

2
+ d(e)

2
+

√
d(v)

2
+ d(e)

2

+

d(e))∑
i = 1

ei adjacent to e

√
d(e)

2
+ d(ei)

2

≥ SOε (G− e) +
√

2d (v) +
√

2d (u) +
√

2d (v) +

d(e)∑
i = 1

ei adjacent to e

√
d(e)

2
+ d(ei)

2

≥ SOε (G− e) +
√

2δ +
√

2δ +
√

2δ + d (e)
√

2 (2δ − 2)

≥ SOε (G− e) + 3
√

2δ +
√

2(2δ − 2)
2
.

By rearranging, we get

SOε(G− e) < SOε(G)−
√

2(4δ2 − 5δ + 4).

By putting α = 4δ2 − 5δ + 2, the result holds.
Case 2. If δ = 1, then for any edge e = xy ∈ E we have d (e) ≥ d (x)−1 and d (e) ≥ d (y)−1.
Therefore, we have

SOε (G) > SOε (G− e) +

√
d(u)

2
+ d(v)

2
+

√
d(u)

2
+ d(e)

2
+

√
d(v)

2
+ d(e)

2

+

d(e)∑
i = 1

ei adjacent to e

√
d(e)

2
+ d(ei)

2

≥ SOε (G− e) +
√

2d (v) +
√
d(u)2 + (d(u)− 1)2 +

√
d(v)2 + (d(v)− 1)2

+ d(e)

√
2(2δ − 2)

2

≥ SOε (G− e) +
√

2δ +

√
(d (u)− 1)

2
+ (d (u)− 1)

2
+

√
(d (v)− 1)

2
+ (d (v)− 1)

2

+ 4
√

2(δ − 1)
2

≥ SOε (G− e) +
√

2δ +
√

2 (δ − 1) +
√

2 (δ − 1) + 4
√

2(δ − 1)
2

≥ SOε (G− e) +
√

2δ + 2
√

2 (δ − 1) + 4
√

2(δ − 1)
2

= SOε (G− e) +
√

2
(
4δ2 − 5δ + 2

)
.

By rearranging, we get

SOε(G− e) < SOε(G)−
√

2(4δ2 − 5δ + 2).

By putting δ = 1, the result is complete.
�

Theorem 3.5. Let G = (V,E) be a graph with the minimum degree δ ≥ 1. For any arbitrary
vertex u ∈ V ,

SOε (G− u) <

{
SOε (G)− 2

√
2δα if δ ≥ 2,

SOε (G)−
√

2 if δ = 1,
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where α = 2δ − 1.

Proof. We consider graph G − u obtained from removing vertex u and all related edges of G
with the entire Sombor index SOε (G− u). Now, we add the vertex u and its related edges to
the graph G− u. Similar to the proof of Theorem 3.4, we have
Case 1 If δ ≥ 2, then

SOε (G) > SOε (G− u) +
∑
uxi∈E

√
d(u)

2
+ d(xi)

2
+

d(u)∑
i = 1

u incident to ei

√
d(u)

2
+ d(ei)

2

+

d(u)∑
i=1

∑
ei adjacent to e
u incident to ei

√
d(e)

2
+ d(ei)

2

≥ SOε (G− u) +
√

2δd (u) + d (u)
(√

2δd (u)
)

+ d (u)
(

2
√

2 (δ − 1)
)

≥ SOε (G− u) +
√

2δ2 +
√

2δ2 + 2
√

2δ (δ − 1)

≥ SOε (G− u) + 2
√

2δ2 + 2
√

2δ (δ − 1) .

By rearranging, we get

SOε(G− u) < SOε(G)− 2
√

2δ (2δ − 1) .

By putting α = 2δ − 1, the result holds.
Case 2 If δ = 1, then

SOε (G) > SOε (G− u) +
∑
uxi∈E

√
d(u)

2
+ d(xi)

2
+

d(u)∑
i = 1

u incident to ei

√
d(u)

2
+ d(ei)

2

+

d(u)∑
i=1

∑
ei adjacent to e
u incident to ei

√
d(e)

2
+ d(ei)

2

≥ SOε (G− u) +
√

2δd (u) + d (u)

√
d(u)

2
+ (d (u)− 1)

2
+ d (u)

(√
2(2δ − 2)

2

)
≥ SOε (G− u) +

√
2δ2 + d (u)

√
2(d (u)− 1)

2
+ 2
√

2d(u) (δ − 1)

≥ SOε (G− u) +
√

2δ2 +
√

2δ (δ − 1) + 2
√

2δ (δ − 1)

≥ SOε (G− u) +
√

2δ2 + 3
√

2δ (δ − 1) .

By rearranging, we get
SOε(G− u) < SOε(G)−

√
2δ(4δ − 3).

By putting δ = 1, the result is complete.
�
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We use a similar technique lower bound for the Sombor index of a graph in [1] to obtain the
bounds for the entire Sombor index for a connected graph given in the following theorem. For
the graph G, we define a set O(G) of different types of ordered pairs, initially equal to empty,
and add its elements according to the following rules.
For a vertex u incident to edge e, we add an ordered pair of type (deg(u), deg(e)). For every
pair of adjacent edges e1 and e2, we add an ordered pair of type (deg(e1), deg(e2))-edge.

Theorem 3.6. For any connected graph G of order n

SOε (Pn) ≤ SOε (G) ≤ SOε (Kn) .

Equalities hold if and only if G ∼= Pn and G ∼= Kn.

Proof. Let G = (V,E) be a connected graph. The upper bound is obtained directly from the
definition. For the lower bound, using Theorem 3.4 by deleting an edge from the graph G,
SOε (G) decreases. Therefore, the connected graph with the minimum entire Sombor index is
a tree.
It can easily be checked that for n= 2, 3 the result holds. We suppose that n≥4. By the
definition of the entire Sombor index in (2) we have

SOε (G) = SO (G) + SO (L (G)) +
∑

u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2
.

Using Lemma 3.2, we have SO(Pn) ≤ SO(T ) for any tree T of order n. We show that
SO (L (Pn)) ≤ SO (L (T )). Since L (Pn) = Pn−1 and the line graph of the tree T is acon-
nected graph of order n − 1, thus by applying Lemma 3.1 we have SO (L (Pn)) ≤ SO(L(T )).
Therefore, it remains to prove∑

u∈V (Pn)

∑
v∈NPn (u)

√
d(u)

2
+ d(uv)

2 ≤
∑

u∈V (T )

∑
v∈NT (u)

√
d(u)

2
+ d(uv)

2
.

According to the proof of Proposition 2.8 (iii), O(Pn) includes two ordered pairs of type (1, 1),
two ordered pairs of type (2, 1) and 2(n− 3) ordered pairs of type (2, 2). Therefore, we have∑

u∈V (Pn)

∑
v∈NPn (u)

√
d(u)

2
+ d(uv)

2
= 2

√
2 + 2

√
5 + 2(n− 3)

√
8

= 2
√

5 + 4n
√

2− 10
√

2. (3)

We consider the tree T ′ of order n with three pairs of type (1, 2)-edge, three pairs of type
(2, 3)-edge and n−7 pairs of type (2, 2)-edge. Therefore, O(T

′
) includes 3 ordered pairs of type

(1, 1), 3 ordered pairs of type (2, 1), 3 ordered pairs of type (3, 2), 3 ordered pairs of type (3, 3)
and 2(n− 7) ordered pairs of type (2, 2). Therefore,∑

u∈V (T ′ )

∑
v∈N

T
′
(u)

√
d(u)

2
+ d(uv)

2
= 3

√
2 + 3

√
5 + 3

√
13 + 3

√
18 + 2(n− 7)

√
8

= 3
√

5+3
√

13+4n
√

2−16
√

2. (4)

Using the relations (3) and (4) and since 2
√

5 + 4n
√

2− 10
√

2 ≤ 3
√

5 + 3
√

13− 16
√

2, we get∑
u∈V (Pn)

∑
v∈NPn (u)

√
d(u)

2
+ d(uv)

2 ≤
∑

u∈V (T ′)

∑
v∈N

T
′ (u)

√
d(u)

2
+ d(uv)

2
.
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By the above discussion, we obtain

SOε (Pn) = SO (Pn) + SO (L (Pn)) +
∑

u∈V (Pn)

∑
v∈NPn (u)

√
d(u)

2
+ d(uv)

2

≤ SO (T ′) + SO (L (T ′)) +
∑

u∈V (T ′)

∑
v∈N

T
′ (u)

√
d(u)

2
+ d(uv)

2

= SOε
(
T
′
)
.

By a similar technique, for any tree T with t ordered pairs of type (1, 2)-edge where t ≥ 4,
the result holds. For the tree with one or two (1, 2)-edge, it can easily be investigated that
SOε (Pn) ≤ SOε (T ).

�

Theorem 3.7. For any tree T of order n,

SOε (Pn) ≤ SOε (T ) ≤ SOε (Sn) .

Equalities hold if and only if T ∼= Pn and T ∼= Sn.

Proof. The lower bound follows from Theorem 3.6. For the upper bound, we consider T a tree
of order n and using the expression (2) we have

SOε (T ) = SO (T ) + SO (L (T )) +
∑

u∈V (T )

∑
v∈NT (u)

√
d (u)

2
+ d(uv)

2
.

Using Lemma 3.2, we have SO(T ) ≤ SO(Sn) for any tree T of order n. Since L(T ) is a connected
graph of order n − 1 and (Sn) = Kn−1, by Lemma 3.1 we have SO (L (T )) ≤ SO (L (Sn)).
Therefore, it is sufficient to show that∑

u∈V (T )

∑
v∈NT (u)

√
d(u)

2
+ d(uv)

2 ≤
∑

u∈V (Sn)

∑
v∈NSn (u)

√
d(u)

2
+ d(uv)

2
.

O(Sn) includes n−1 ordered pairs of type (1, n−2) and (n−1) ordered pairs of type (n−1, n−2).
Therefore, we have∑
u∈V (Sn)

∑
v∈NSn (u)

√
d(u)

2
+ d(uv)

2
= (n− 1)

√
1 + (n− 2)

2
+ (n− 1)

√
(n− 1)

2
+ (n− 2)

2
.

(5)
By using the proof of Theorem 3.6, and considering the tree T ′ of order n with 3 ordered pairs
of type (1, 1), 3 ordered pairs of type (2, 1), 3 ordered pairs of type (3, 2) and 2(n− 7) ordered
pairs of type (2, 2). Note that the greatest values of the terms

√
x2 + y2 of the ordered pair

(x, y) where x = deg(u) and y = deg(e) for a vertex u incident to an edge e is (n − 1, n − 2)
and for other cases, (1, n − 2) greatest values of (2, 1) , (3, 2) , (3, 3) and (2, 2). Therefore,
using the relations (4) and (5), we get∑

u∈V (T ′)

∑
v∈N

T
′ (u)

√
d(u)

2
+ d(uv)

2 ≤
∑

u∈V (Sn)

∑
v∈NSn (u)

√
d(u)

2
+ d(uv)

2
,
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and consequently,

SOε (T ′) = SO (T ′) + SO (L (T ′)) +
∑

u∈V (T ′)

∑
v∈N

T
′ (u)

√
d(u)

2
+ d(uv)

2

≤ SO (Sn) + SO (L (Sn)) +
∑

u∈V (Sn)

∑
v∈NSn (u)

√
d(u)

2
+ d(uv)

2

= SOε (Sn) .

By the above discussion, for any tree T with t ordered pairs of type (1, 2)-edge where t ≥ 4
or t ≤ 2, the result holds.

�

We obtain an upper bound of the entire Sombor index in terms of some topological indices in
G. To do this, we need the following know inequality.
Cauchy-Schwarz inequality [19] For all sequences of real numbers ai and bi(

n∑
i=1

aibi

)2

≤

(
n∑
i=1

a2i

)(
n∑
i=1

b2i

)
.

Theorem 3.8. Let G be a connected graph of order n and size m whose vertices have degree
di for i = 1, 2, . . . , n. Then

SOε (G) ≤
√
mF (G) +

√(
1

2
M1 (G)−m

)
EF (G) +

√
2m (F (G) + 2RM1 (G)).

The equality holds if and only if G is a regular graph.

Proof. For the connected graph G, by the definition of the entire Sombor index (2), we have

SOε (G) = SO (G) + SO (L (G)) +
∑

u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2
.

Using Lemma 3.3, we have
SO (G) ≤

√
mF (G). (6)

Since the number of edges in line graph L(G) is equal to m
′

= 1
2

∑n
i=1 d

2
i −m = 1

2M1(G)−m
and by applying Lemma 3.3, we get

SO (L (G)) ≤
√
m′F (L (G)) =

√(
1

2
M1 (G)−m

)
EF (G). (7)

Therefore, it is sufficient to prove that∑
u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2 ≤
√

2m (F (G) + 2RM1 (G)).

According to Cauchy-Schwarz inequality and put ai = 1 and bi =

√
d(u)

2
+ d(uv)

2, we have
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(∑
u∼uv

√
d(u)

2
+ d(uv)

2

)2

≤

(∑
u∼uv

1

)(∑
u∼uv

(√
d(u)

2
+ d(uv)

2

)2
)

= 2m

(∑
u∼uv

(
d(u)

2
+ d(uv)

2
))

= 2m

 ∑
u∈V (G)

∑
v∈N(u)

d(u)
2

+
∑

u∈V (G)

d(uv)
2


= 2m

(∑
u∈V

d(u)
3

+ 2
∑
uv∈E

d(uv)
2

)
= 2m (F (G) + 2RM1 (G)) .

Therefore, ∑
u∈V (G)

∑
v∈N(u)

√
d (u)

2
+ d(uv)

2 ≤
√

2m (F (G) + 2RM1 (G)). (8)

Therefore, using the relations (6), (7) and (8) in the expression (2) the result completes. The
equalities hold if and only if G is a regular graph. �
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