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Abstract

The general degree-eccentricity index of a graph G is defined
by, DEIa,b(G) =

∑
v∈V (G) d

a
G(v)ecc

b
G(v) for a, b ∈ R, where

V (G) is the vertex set of G, eccG(v) is the eccentricity of a
vertex v and dG(v) is the degree of v in G.
In this paper, we generalize results on the general eccentric con-
nectivity index for trees. We present upper and lower bounds
on the general degree-eccentricity index for trees of given order
and diameter and trees of given order and number of pendant
vertices. The upper bounds hold for a > 1 and b ∈ R \ {0}
and the lower bounds hold for 0 < a < 1 and b ∈ R \ {0}. We
include the case a = 1 and b ∈ {−1, 1} in those theorems for
which the proof of that case is not complicated. We present
all the extremal graphs, which means that our bounds are best
possible.

c© 2023 University of Kashan Press. All rights reserved

1 Introduction
A topological index is a numerical value that associates a chemical structure with various
physical properties, chemical reactivity, or biological activity of molecules.

Let G be a simple connected graph with vertex set V (G) and edge set E(G). Order of G is
defined as the number of vertices in G. Degree of a vertex v ∈ V (G), denoted by dG(v) is the
number of vertices adjacent to the vertex v. A Pendant vertex is a vertex of degree one, and
a pendant edge is an edge incident with a pendant vertex. A branching vertex is a vertex of
degree at least three. A pendant path is a path in which one of the end vertices is a pendant
vertex and the other is branching, and all the internal vertices (if exist) have degree two. For
U ⊂ V (G) and F ⊂ E(G), the graph obtained from G by deleting all the vertices in U (resp.
edges in F is denoted by G − U (res. G − F ). On the other hand, for a pair of non-adjacent
vertices u and v, in G, the graph obtained from G by adding an edge uv is denoted by G+ uv.

For u, v ∈ V (G), the distance between u and v, denoted by dG(u, v) is the length of a
shortest (u, v)-path in G. The eccentricity of a vertex v in G, denoted by ecG(v) is the maximum
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distance from v to any other vertex. The diameter of a graph G is the length of the shortest
path between the most distanced vertices. It measures the extent of a graph and the topological
length between two vertices. A tree is a connected and acyclic graph. We denote, the path and
star graphs of order n by Pn and Sn, respectively. For a connected graph G and a, b ∈ R, the
general degree-eccentricity index of G is defined as

DEIa,b(G) =
∑

v∈V (G)

daG(v)ec
b
G(v).

Several well-studied eccentricity-based topological indices are special cases of this general index.
For instance, DEIa,1(G) is the general eccentric connectivity index, DEI1,1(G) is the classical
eccentric connectivity index, DEI1,−1(G) is the connective eccentricity index, DEI0,1(G) is the
total eccentricity index and DEI0,2(G) is the first Zagreb eccentricity index of G.

The mathematical properties of eccentricity-based topological indices have been extensively
studied due to their wide range of applications. In [1–3], the authors studied the eccentric
connectivity index for trees with a given order, order and diameter, and order and number of
pendant vertices. In [4, 5], the authors studied the connective eccentricity index for graphs of
given order and clique number, and order and matching number respectively.

Zagreb eccentricity indices have been investigated extensively. In [6–8], the authors studied
Zagreb eccentricity indices for trees and general graphs, with prescribed domination number or
bipartition. In [9], sharp upper and lower bounds on the general eccentric connectivity index
of trees with prescribed order and diameter/number of pendant vertices were given. In [10],
the authors introduced the general degree-eccentricity index of a graph, they also determined
the general degree-eccentricity index for connected graphs of a given order in combination with
given vertex connectivity, edge connectivity, number of pendant vertices, number of bridges or
matching number. In [11], the same authors studied the general degree-eccentricity index for
trees of a given order, and trees of a given order in combination with a given matching number,
independence number, domination number or bipartition.

In this paper, motivated by the works in [10, 11], we continue to study the general degree-
eccentricity index. We generalize results on the general eccentric connectivity index for trees
which were presented in [9].

The main contribution of this paper is the characterization of trees with a given order and
diameter, as well as trees with a given order and number of pendant vertices, that have the
maximum and minimum general degree-eccentricity index. We study the upper bounds for
a > 1 and b ∈ R \ {0} and the lower bounds for 0 < a < 1 and b ∈ R \ {0}. In some of the
results, we include the case a = 1 and b ∈ {−1, 1}. We also show that all our bounds are sharp
by presenting extremal graphs. Lemma 1.1 was proved in [9], and it plays an important role in
the proof of our main results.

Lemma 1.1. Let 1 ≤ x < y and c > 0. For a > 1 or a < 0, we have

(x+ c)a − xa < (y + c)a − ya.

If 0 < a < 1, then
(x+ c)a − xa > (y + c)a − ya.

2 Trees of given order and diameter
In this section, we characterize trees of prescribed order n and diameter d having the maximum
and the minimum DEIa,b index.
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Let Tn,d be the set of all n-vertex trees with diameter d. Clearly, Tn,2 = {Sn} and Tn,n−1 =
{Pn}. So in what follows, we consider Tn,d for 3 ≤ d ≤ n− 2.

For a positive integer d, let Vn,d be a tree obtained from a path Pd+1 : x0x1 . . . xd by
attaching n − d − 1 pendant vertices to vertex xb d2 c

. We prove that Vn,d is the unique tree
having the maximum DEIa,b index for a ≥ 1 and b < 0, and the minimum DEIa,b index for
0 < a ≤ 1 and b > 0, in the class Tn,d.

Theorem 2.1. Let T ∈ Tn,d. Then for a ≥ 1 and b < 0, we have

DEIa,b(T ) ≤ 2a+1
d−1∑
r= d+2

2

rb+(n− d+ 1)a
(
d

2

)b
+(n− d− 1)

(
d+ 2

2

)b
+ 2db,

if d is even,

DEIa,b(T ) ≤ 2a+1
d−1∑
r= d+3

2

rb+((n− d+ 1)a+2a)

(
d+ 1

2

)b
+(n− d− 1)

(
d+ 3

2

)b
+ 2db,

if d is odd, with equalities if and only if T is Vn,d.

Proof. Let Tmax be a tree with maximum DEIa,b index in the class Tn,d. We show that Tmax
is Vn,d.

Assume, to the contrary, that there exists a tree G′n,d of order n and diameter d with
DEIa,b(G

′
n,d) > DEIa,b(Vn,d) for some n and d. Let G′n∗,d be a tree having the minimum

possible number of vertices n∗ satisfying DEIa,b(G′n∗,d) > DEIa,b(Vn∗,d).
Let P : x0x1x2 . . . xd be a diametral path in G′n∗,d. Since G′n∗,d is not a path graph, it has

a pendant vertex, say v other than x0 and xd. Let u be the neighbor of v. Let V (G′n∗−1,d) =
V (G′n∗,d) \ {v} and E(G′n∗−1,d) = E(G′n∗,d) \ {uv}. Then G′n∗−1,d ∈ Tn−1,d.

Let dG′
n∗,d

(u) = r. Then we have 2 ≤ r ≤ n∗−d+1, dG′
n∗−1,d

(u) = r− 1, dG′
n∗,d

(v) = 1 and
dG′

n∗−1,d
(y) = dG′

n∗,d
(y) for all y ∈ V (G′n∗,d) \ {u, v}. Moreover, we have ecG′

n∗,d
(v) ≥ dd2e+ 1,

ecG′
n∗−1,d

(u) = ecG′
n∗,d

(u) ≥ dd2e and ecG′n∗−1,d
(y) = ecG′

n∗,d
(y) for y ∈ V (G′n∗,d) \ {u, v}. This

implies that ecbG′
n∗,d

(v) ≤
(⌈
d
2

⌉
+ 1
)b
, ecbG′

n∗−1,d
(u) = ecbG′

n∗,d
(u) ≤

⌈
d
2

⌉b
for b < 0. Thus

DEIa,b(G
′
n∗,d)−DEIa,b(G′n∗−1,d) = daG′

n∗,d
(v)ecbG′

n∗,d
(v)

+daG′
n∗,d

(u)ecbG′
n∗,d

(u)− daG′
n∗−1,d

(u)ecbG′
n∗−1,d

(u)

= ecbG′
n∗,d

(v) + raecbG′
n∗,d

(u)− (r − 1)aecbG′
n∗,d

(u)

≤
(⌈

d

2

⌉
+ 1

)b
+

⌈
d

2

⌉b
(ra − (r − 1)a).

Since G′n∗,d is a tree having the minimum possible number of vertices n∗ such that
DEIa,b(G

′
n∗,d) > DEIa,b(Vn∗,d), we obtain DEIa,b(G′n∗−1,d) ≤ DEIa,b(Vn∗−1,d) which implies

that

DEIa,b(G
′
n∗,d)−DEIa,b(G′n∗−1,d) > DEIa,b(Vn∗,d)−DEIa,b(Vn∗−1,d)

=

(⌈
d

2

⌉
+ 1

)b
+

⌈
d

2

⌉b
((n∗ − d+1)a − (n∗−d)a).
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This implies that,(⌈
d

2

⌉
+ 1

)b
+

⌈
d

2

⌉b
(ra − (r − 1)a) >

(⌈
d

2

⌉
+ 1

)b
+

⌈
d

2

⌉b
((n∗ − d+ 1)a − (n∗ − d)a),

and hence
ra − (r − 1)a > (n∗ − d+ 1)a − (n∗ − d)a,

which is a contradiction, since 2 ≤ r ≤ n∗ − d + 1 and a ≥ 1 (see Lemma 1.1). Thus Tmax is
Vn,d. By simple calculation, we have

DEIa,b(Vn,d) = 2a+1
d−1∑
r= d+2

2

rb+(n− d+ 1)a
(
d

2

)b
+(n− d− 1)

(
d+ 2

2

)b
+ 2db,

for even d, and

DEIa,b(Vn,d) = 2a+1
d−1∑
r= d+3

2

rb+((n− d+ 1)a+2a)

(
d+ 1

2

)b
+(n− d− 1)

(
d+ 3

2

)b
+ 2db,

for odd d. �

Theorem 2.2. Let T ∈ Tn,d. Then for 0 < a ≤ 1 and b > 0, we have

DEIa,b(T ) ≥ 2a+1
d−1∑
r= d+2

2

rb+(n− d+ 1)a
(
d

2

)b
+(n− d− 1)

(
d+ 2

2

)b
+ 2db,

if d is even,

DEIa,b(T ) ≥ 2a+1
d−1∑
r= d+3

2

rb+((n− d+ 1)a+2a)

(
d+ 1

2

)b
+(n− d− 1)

(
d+ 3

2

)b
+ 2db,

if d is odd, with equalities if and only if T is Vn,d.

Proof. We present those parts of the proof of Theorem 2.2 which are different from the proof
of Theorem 2.1. Let Tmin be a tree with minimum DEIa,b index in the class Tn,d. We
show that Tmin is Vn,d. Assume to the contrary that there exists a tree G′n,d of order n and
diameter d with DEIa,b(G′n,d) > DEIa,b(Vn,d) for some n and d. Let G′n∗,d be a tree having
the minimum possible number of vertices n∗ satisfying DEIa,b(G′n∗,d) < DEIa,b(Vn∗,d). Since

ecG′
n∗,d

(v) ≥ dd2e + 1 and ecG′
n∗−1,d

(u) = ecG′
n∗,d

(u) ≥ dd2e, we have ecbG′
n∗,d

(v) ≥
(⌈
d
2

⌉
+ 1
)b
,

ecbG′
n∗−1,d

(u) = ecbG′
n∗,d

(u) ≥
⌈
d
2

⌉b
for b > 0. Thus

DEIa,b(G
′
n∗,d)−DEIa,b(G′n∗−1,d) = daG′

n∗,d
(v)ecbG′

n∗,d
(v) + daG′

n∗,d
(u)ecbG′

n∗,d
(u)

−daG′
n∗−1,d

(u)ecbG′
n∗−1,d

(u)

= ecbG′
n∗,d

(v) + raecbG′
n∗,d

(u)− (r − 1)aecbG′
n∗,d

(u)

≥
(⌈

d

2

⌉
+ 1

)b
+

⌈
d

2

⌉b
(ra−(r − 1)a).
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Since G′n∗,d is a tree with the smallest possible order n∗ such that
DEIa,b(G

′
n∗,d) < DEIa,b(Vn∗,d), we obtain DEIa,b(G′n∗−1,d) ≥ DEIa,b(Vn∗−1,d) which implies

that

DEIa,b(G
′
n∗,d)−DEIa,b(G′n∗−1,d) < DEIa,b(Vn∗,d)−DEIa,b(Vn∗−1,d)

=

(⌈
d

2

⌉
+ 1

)b
+

⌈
d

2

⌉b
((n∗−d+1)a − (n∗−d)a).

This implies that,(⌈
d

2

⌉
+ 1

)b
+

⌈
d

2

⌉b
(ra − (r − 1)a) <

(⌈
d

2

⌉
+ 1

)b
+

⌈
d

2

⌉b
((n∗ − d+ 1)a − (n∗ − d)a),

and hence
ra − (r − 1)a < (n∗ − d+ 1)a − (n∗ − d)a,

which is a contradiction, since 2 ≤ r ≤ n∗ − d+ 1 and 0 < a ≤ 1 (see Lemma 1.1). Thus Tmin
is Vn,d. �

For a positive integer d, the tree obtained by attaching n− d− 1 vertices to vertex x1 from
a path Pd+1 : x0x1x2 . . . xd is denoted by Bn,d. We prove that Bn,d is the unique tree having
the maximum and the minimum DEIa,b index in the class Tn,d for a > 1, b > 0, and 0 < a < 1,
b < 0 respectively.

Theorem 2.3. Let T ∈ Tn,d. Then for a > 1 and b > 0, we have

DEIa,b(T ) ≤ 2a+1
d−2∑
r= d+2

2

rb + ((n− d+1)a+2a)(d− 1)b+(n−d+1)db+2a
(
d

2

)b
,

if d is even,

DEIa,b(T ) ≤ 2a+1
d−2∑
r= d+1

2

rb+((n− d+ 1)a+2a)(d− 1)b+(n− d+ 1)db,

if d is odd, with equalities if and only if T is Bn,d.

Proof. Let Tmax be a tree with maximum DEIa,b index in the class Tn,d. We show by contra-
diction that Tmax is Bn,d.

Suppose that Tmax is not Bn,d. Let P : x0x1x2 . . . xd be a path whose length is the diameter
of Tmax. Without any loss of generality, we assume that dTmax

(x1) ≥ dTmax
(xd−1).

Since Tmax is not a path graph, there is a non-pendant vertex v 6∈ P whose all neighbors
except for one are pendant vertices or a non pendant vertex v ∈ P \ {x1} whose all r ≥ 1
neighbors which are not in P are pendant vertices. We denote those pendant vertices by
v1, v2, . . . , vr, where r ≥ 1. It follows that dTmax

(v) = r + ε where ε = 1 or 2.
Let T ′ be a tree defined by, T ′ = Tmax − {vv1, vv2, . . . , vvr}+ {x1v1, x1v2, . . . , x1vr}. Then

T ′ ∈ Tn,d. We have dTmax
(x1) = s ≥ 2. Then dT ′(x1) = s + r and dT ′(v) = ε. We obtain

ecTmax
(x1) = ecT ′(x1) = d − 1, ecTmax

(v) = ecT ′(v) ≤ d − 1, ecTmax
(vi) ≤ d and ecT ′(vi) = d,

for i = 1, 2, . . . , r. This implies that, ecbTmax
(v) = ecbT ′(v) ≤ (d−1)b, ecbTmax

(vi) ≤ ecbT ′(vi) = db

for b > 0 and for i = 1, 2, . . . , r.
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For all y ∈ V (Tmax) \ {x1, v}, dTmax(y) = dT ′(y) and for y ∈ V (Tmax) \ {v1, v2, . . . , vr},
ecTmax

(y) = ecT ′(y) and hence ecbTmax
(y) = ecbT ′(y). Thus

DEIa,b(Tmax)−DEIa,b(T ′) =

r∑
i=1

daT ′(vi)(ec
b
Tmax

(vi)− ecbT ′(vi))

+daTmax
(x1)ec

b
Tmax

(x1) + daT ′(x1)ec
b
T ′(x1)

+daTmax
(v)ecbTmax

(v)− daT ′(v)ec
b
T ′(v)

= r[ecbTmax
(v1)− db] + (d− 1)b[sa − (s+ r)a]

+ecbT ′(v)[(r + ε)a − εa]
≤ r[ecbTmax

(v1)− db] + (d− 1)b[sa − (s+ r)a]

+(d− 1)b[(r + ε)a − εa]
≤ (d− 1)b[sa − (s+ r)a + (r + ε)a − εa]. (1)

If s > 2 and a > 1, then by Lemma 1.1,

sa − (s+ r)a + (r + ε)a − εa < 0,

which implies that DEIa,b(Tmax) < DEIa,b(T
′).

If s = 2 and a > 1, then by Lemma 1.1,

sa − (s+ r)a + (r + ε)a − εa ≤ 0,

with equality if and only if ε = 2, which means that v ∈ P . Then the equality in (1) hold only
if ecT ′(v) = d − 1, that is v = xd−1. But by our assumption dTmax

(xd−1) = 2, that is there
is no pendant vertex outside the path adjacent to xd−1. Therefore, we get DEIa,b(Tmax) <
DEIa,b(T

′), which is a contradiction. Thus Tmax is Bn,d. We have

DEIa,b(Bn,d) = 2a+1
d−2∑
r= d+2

2

rb+((n−d+1)a+2a)(d− 1)b+(n−d+1)db+2a
(
d

2

)b
,

for even d, and

DEIa,b(Bn,d) = 2a+1
d−2∑
r= d+1

2

rb+((n− d+ 1)a+2a)(d− 1)b+(n− d+ 1)db,

for odd d. �

Theorem 2.4. Let T ∈ Tn,d. Then for 0 < a < 1 and b < 0, we have

DEIa,b(T ) ≥ 2a+1
d−2∑
r= d+2

2

rb+((n−d+1)a+2a)(d− 1)b+(n−d+1)db+2a
(
d

2

)b
,

if d is even,

DEIa,b(T ) ≥ 2a+1
d−2∑
r= d+1

2

rb+((n− d+ 1)a+2a)(d− 1)b+(n− d+ 1)db,

if d is odd, with equalities if and only if T is Bn,d.
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Proof. We present those parts of the proof of Theorem 2.4 which are different from the proof
of Theorem 2.3.

Let Tmin be a tree with minimum DEIa,b index in the class Tn,d. We show that Tmin is
Bn,d. Assume to the contrary that Tmin is not Bn,d.

Since ecTmin
(v) = ecT ′(v) ≤ d − 1, and ecTmin

(vi) ≤ ecT ′(vi) = d, we obtain ecbTmin
(v) =

ecbT ′(v) ≥ (d− 1)b, and ecbTmin
(vi) ≥ ecbT ′(vi) = db for b < 0 and for i = 1, 2, . . . , r. Hence

DEIa,b(Tmin)−DEIa,b(T ′) ≥ r[ecbTmin
(v1)− db]

+(d− 1)b[sa − (s+ r)a] + (d− 1)b[(r + ε)a − εa]
≥ (d− 1)b[sa − (s+ r)a + (r + ε)a − εa]. (2)

If s > 2 and 0 < a < 1, then by Lemma 1.1,

sa − (s+ r)a + (r + ε)a − εa > 0,

which implies that DEIa,b(Tmin) > DEIa,b(T
′), which is a contradiction.

If s = 2 and 0 < a < 1, then by Lemma 1.1,

(sa − (s+ r)a + (r + ε)a − εa ≥ 0,

with equality if and only if ε = 2, which means that v ∈ P . Then the equality in (2) hold only
if ecT ′(v) = d − 1, that is v = xd−1. But by our assumption dTmin

(xd−1) = 2, that is there
is no pendant vertex outside the path adjacent to xd−1. Therefore we get DEIa,b(Tmin) >
DEIa,b(T

′), which is a contradiction. So Tmin is Bn,d.
�

3 Trees of given order and number of pendant vertices
In this section, we characterize trees of prescribed order n and number of pendant vertices p
having the maximum and the minimum DEIa,b index.

Let Tn,p be the set of all n-vertex trees with p pendant vertices. Clearly, Tn,2 = {Pn} and
Tn,n−1 = {Sn}. So in what follows, we consider Tn,p for 3 ≤ p ≤ n− 2.

Let Xn,p be a tree that consists of p paths attached to one vertex, such that the lengths
of any two paths differ by at most one. We prove that Xn,p is the only tree in the class Tn,p
that has the maximum DEIa,b index for a > 1 and b < 0, and the minimum DEIa,b index for
0 < a < 1 and b > 0.

Theorem 3.1. Let T ∈ Tn,p and k = bn−1p c. Then for a > 1 and b < 0, we have

DEIa,b(T ) ≤ p2a
2k−1∑
r=k+1

rb + kbpa + p(2k)b,

if n ≡ 1 (mod p),

DEIa,b(T ) ≤ p2a
2k∑

r=k+2

rb + (pa + 2a)(k + 1)b + p(2k + 1)b,

if n ≡ 2 (mod p), and

DEIa,b(T )≤p2a
2k∑

r=k+2

rb+((2k + 2)b+2a(2k + 1)b)(n− kp− 1)+(k + 1)bpa+(kp− n+ p+ 1),
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otherwise, with equalities if and only if T is Xn,p.

Proof. Let Tmax be a tree with maximum DEIa,b index in the class Tn,p. We show by contra-
diction that Tmax is Xn,p.

Let P : x0x1x2 . . . xd be a diametral path in Tmax and v be a central vertex of Tmax with a
maximum degree. Clearly, v = xb d2 c

or xd d2 e and hence ecTmax(v) = dd2e. Let dTmax(v) = s ≥ 2.

Claim 3.2. dTmax(u) ≤ 2, for all u ∈ V (Tmax) \ {v}.

Suppose to the contrary that there exists a vertex u ∈ V (Tmax) \ {v} such that dTmax
(u) =

r ≥ 3. Let u1, u2, . . . , ur−2 be the neighbors of u not in P and not on the (u, v)-path.
Let T ′ = Tmax − {uu1, uu2, . . . , uur−2} + {vu1, vu2, . . . , vur−2}. So, T ′ ∈ Tn,p. We have
dT ′(v) = s+ r − 2, dT ′(u) = 2 and dTmax(y) = dT ′(y) for all y ∈ V (T ′) \ {v, u}.
For each i = 1, 2, . . . , r − 2, there is no path in Tmax with the first vertex u and the second
vertex ui which is longer than dd2e. Since ecTmax

(y) = dTmax
(y, x0) or ecTmax

(y) = dTmax
(y, xd)

for all y ∈ V (Tmax), we have ecT ′(y) ≤ ecTmax
(y) and hence ecbT ′(y) ≥ ecbTmax

(y) for b < 0.
Then

DEIa,b(Tmax)−DEIa,b(T ′) ≤ daTmax
(v)ecbTmax

(v)− daT ′(v)ecbT ′(v)
+daTmax

(u)ecbTmax
(u)− daT ′(u)ec

b
T ′(u)

≤ ecbTmax
(v)[daTmax

(v)− daT ′(v)] + ecbTmax
(u)[daTmax

(u)− daT ′(u)]
= ecbTmax

(v)[sa − (s+ r − 2)a] + ecbTmax
(u)[ra − 2a]

≤ ecbTmax
(v)[sa − (s+ r − 2)a] + ecbTmax

(v)[ra − 2a]

= ecbTmax
(v)[sa − (s+ r − 2)a + ra − 2a].

If s ≥ 3 and a > 1, then by Lemma 1.1,

sa − (s+ r − 2)a + ra − 2a < 0,

which gives DEIa,b(Tmax) < DEIa,b(T
′), which is a contradiction.

Let s = 2. In this case, u is not a central vertex as v is a central vertex with maximum
degree and dTmax

(v) = 2, so ecTmax
(u) > ecTmax

(v). This implies that ecbTmax
(u) < ecbTmax

(v)
for b < 0. Hence

DEIa,b(Tmax)−DEIa,b(T ′) ≤ ecbTmax
(v)[sa − (s+ r − 2)a] + ecbTmax

(u)[ra − 2a]

< ecbTmax
(v)[sa − (s+ r − 2)a] + ecbTmax

(v)[ra − 2a]

= ecbTmax
(v)[sa − (s+ r − 2)a + ra − 2a]

= ecbTmax
(v)[2a − ra + ra − 2a]

= 0,

which gives DEIa,b(Tmax) < DEIa,b(T
′), which is a contradiction.

Therefore, Tmax has only one vertex of degree at least three, which is v. This implies that
Tmax consists of p pendant paths attached to v. Since v is a central vertex of Tmax, there are
two longest pendant paths attached to v whose lengths differ by at most 1. Let those two paths
be Q : vv1v2 . . . vt and Q′ : vv′1v′2 . . . v′t−ε, where ε = 0 or 1.

Claim 3.3. Any two pendant paths attached to v have lengths that differ by at most one.
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We prove the claim by contradiction. Suppose that there are two pendant paths, whose
lengths differ by at least 2. It means that there is a path vv′′1 v

′′
2 . . . v

′′
q in Tmax, such that

1 ≤ q ≤ t− 2 and dTmax
(v′′q ) = 1.

Let T ′ = Tmax−{v′′q−1v′′q , vt−2vt−1, vt−1vt}+{vt−1v′′q−1, vt−1v′′q , vt−2vt}. Then Tmax ∈ Tn,p.
Note that if q = 1, then v′′q−1 = v. We have dTmax

(v′′q ) = dT ′(v
′′
q ) = dTmax

(vt) = dT ′(vt) = 1 and
dTmax(vt−1) = dT ′(vt−1) = 2. Moreover, dTmax(y) = dT ′(y) for all y ∈ V (Tmax). We also know
that ecTmax(v

′′
q ) = q+t, ecT ′(v′′q ) = (q+1)+t−ε, ecTmax(vt) = 2t−ε, ecT ′(vt) = ecTmax(vt−1) =

2t− ε− 1, and ecT ′(vt−1) = q+(t− ε). Since ecT ′(y) ≤ ecTmax
(y), we have ecbT ′(y) ≥ ecbTmax

(y)
for b < 0 and for all y ∈ V (Tmax) \ {v′′q }. Then

DEIa,b(Tmax)−DEIa,b(T ′) ≤ daTmax
(v′′q )ec

b
Tmax

(v′′q )− daT ′(v′′q )ecbT ′(v′′q )
+daTmax

(vt)ec
b
Tmax

(vt)− daT ′(vt)ecbT ′(vt)
+daTmax

(vt−1)ec
b
Tmax

(vt−1)− daT ′(vt−1)ecbT ′(vt−1)
= (q + t)b−(q + t− ε+ 1)b + (2t− ε)b − (2t− ε− 1)b

+ [(2t− ε− 1)b − (q + t− ε)b]2a.

If ε = 0, then

DEIa,b(Tmax)−DEIa,b(T ′) ≤ (q + t)b − (q + t+ 1)b + (2t)b − (2t− 1)b

+[(2t− 1)b − (q + t)b]2a

= [(q + t)b − (2t− 1)b][1− 2a] + (2t)b − (q + t+ 1)b

< [(q + t)b − (2t− 1)b][1− 2a]

< 0.

This implies that, DEIa,b(Tmax) < DEIa,b(T
′), which is a contradiction.

If ε = 1, then

DEIa,b(Tmax)−DEIa,b(T ′) ≤ (2t− 1)b − (2t− 2)b + [(2t− 2)b − (q + t− 1)b]2a

< 0.

This implies that, DEIa,b(Tmax) < DEIa,b(T
′), which contradicts our assumption. Thus Tmax

is Xn,p. By simple calculation, we have

DEIa,b(Xn,p) = p2a
2k−1∑
r=k+1

rb + kbpa + p(2k)b,

if n ≡ 1 (mod p),

DEIa,b(Xn,p) = p2a
2k∑

r=k+2

rb + (pa + 2a)(k + 1)b + p(2k + 1)b,

if n ≡ 2 (mod p), and

DEIa,b(Xn,p) = p2a
2k∑

r=k+2

rb+((2k+2)b+2a(2k+1)b)(n−kp−1)+(k+1)bpa+(kp−n+p+1),

otherwise. �
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Theorem 3.4. Let T ∈ Tn,p and k = bn−1p c. Then for 0 < a < 1 and b > 0 we have

DEIa,b(T ) ≥ p2a
2k−1∑
r=k+1

rb + kbpa + p(2k)b,

if n ≡ 1 (mod p),

DEIa,b(T ) ≥ p2a
2k∑

r=k+2

rb + (pa + 2a)(k + 1)b + p(2k + 1)b,

if n ≡ 2 (mod p),

DEIa,b(T ) ≤ p2a
2k∑

r=k+2

rb+((2k+2)b+2a(2k+1)b)(n− kp− 1)+ (k+1)bpa+(kp−n+ p+1),

otherwise, with equalities if and only if T is Xn,p.

Proof. We present those parts of the proof of Theorem 3.4 which are different from the proof
of Theorem 3.1. Let Tmin be a tree with minimum DEIa,b index in the class Tn,p. We show
by contradiction that Tmin is Xn,p.

Claim 3.5. dTmin
(u) ≤ 2, for all u ∈ V (Tmin) \ {v}.

Since ecT ′(y) ≤ ecTmin
(y), we obtain ecbT ′(y) ≤ ecbTmin

(y) for b > 0 and for all y ∈ V (Tmin).
It follows that

DEIa,b(Tmin)−DEIa,b(T ′) ≥ daTmin
(v)ecbTmin

(v)− daT ′(v)ecbT ′(v)
+daTmin

(u)ecbTmin
(u) daT ′(u)ec

b
T ′(u)

≥ ecbTmin
(v)[daTmin

(v)− daT ′(v)] + ecbTmin
(u)[daTmin

(u)− daT ′(u)]
= ecbTmin

(v)[sa − (s+ r − 2)a]+ecbTmin
(u)[ra−2a]

≥ ecbTmin
(v)[sa−(s+ r − 2)a]+ecbTmin

(v)[ra−2a]
= ecbTmin

(v)[sa − (s+ r − 2)a + ra − 2a].

If s ≥ 3 and 0 < a < 1, then by Lemma 1.1,

sa − (s+ r − 2)a + ra − 2a > 0,

which gives DEIa,b(Tmin) > DEIa,b(T
′), which is a contradiction.

Let s = 2. In this case, u is not a central vertex as v is a central vertex with maximum
degree and dTmin(v) = 2, so ecTmin(u) > ecTmin(v). This implies that, ecbTmin

(u) > ecbTmin
(v)

for b > 0. Hence

DEIa,b(Tmin)−DEIa,b(T ′) ≥ ecbTmin
(v)[sa − (s+ r − 2)a] + ecbTmin

(u)[ra − 2a]

> ecbTmin
(v)[sa − (s+ r − 2)a] + ecbTmin

(v)[ra − 2a]

= ecbTmin
(v)[sa − (s+ r − 2)a + ra − 2a]

= ecbTmin
(v)[2a − ra + ra − 2a]

= 0,

which gives DEIa,b(Tmin) > DEIa,b(T
′), which is a contradiction. Therefore Tmin has only

one vertex of degree at least three, which is v. This implies that Tmin consists of p pendant
paths attached to v.
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Claim 3.6. Any two pendant paths attached to v have lengths that differ by at most one.

Since ecT ′(y) ≤ ecTmin
(y), we obtain ecbT ′(y) ≤ ecbTmin

(y) for b > 0 and for all y ∈ V (Tmin)\
{v′′q }. Then

DEIa,b(Tmin)−DEIa,b(T ′) ≥ daTmin
(v′′q )ec

b
Tmin

(v′′q )− daT ′(v′′q )ecbT ′(v′′q )
+daTmin

(vt)ec
b
Tmin

(vt)− daT ′(vt)ecbT ′(vt)
+daTmin

(vt−1)ec
b
Tmin

(vt−1)− daT ′(vt−1)ecbT ′(vt−1)
= (q + t)b − (q + t− ε+ 1)b + (2t− ε)b−(2t− ε− 1)b

+[(2t− ε− 1)b − (q + t− ε)b]2a.

If ε = 0, then

DEIa,b(Tmin)−DEIa,b(T ′) ≥ (q + t)b − (q + t+ 1)b + (2t)b − (2t− 1)b

+[(2t− 1)b − (q + t)b]2a

= [(q + t)b − (2t− 1)b][1− 2a] + (2t)b − (q + t+ 1)b

> [(q + t)b − (2t− 1)b][1− 2a]

> 0.

This implies that, DEIa,b(Tmin) > DEIa,b(T
′), which contradicts our assumption.

If ε = 1, then

DEIa,b(Tmin)−DEIa,b(T ′) ≥ (2t− 1)b − (2t− 2)b + [(2t− 2)b − (q + t− 1)b]2a

> 0.

This implies that, DEIa,b(Tmin) > DEIa,b(T
′), which is in contradiction with our assumption.

Thus Tmin is Xn,p. �

For each 3 ≤ p ≤ n− 2, let Yn,p be a tree obtained from a path Qn−p+2 : x0x1x2 . . . xn−p+1

by attaching p− 2 pendant vertices to vertex x1.
We show thatDEIa,b(T ) ≤ DEIa,b(Yn,p) for a > 1 and b > 0, andDEIa,b(T ) ≥ DEIa,b(Yn,p)

for 0 < a < 1 and b < 0 for every tree in the class Tn,p.

Theorem 3.7. Let T ∈ Tn,p. Then for a > 1 and b > 0, we have

DEIa,b(T ) ≤ 2a+1

n−p−1∑
r=n−p+2

2

rb + (pa+2a)(n− p)b+p(n− p+ 1)b,

if n− p is even,

DEIa,b(T ) ≤ 2a+1

n−p−1∑
r=n−p+3

2

rb+2a
(
n− p+ 1

2

)b
+(pa+2a)(n− p)b+p(n− p+ 1)b,

if n− p is odd, with equalities if and only if T is Yn,p.

Proof. Let Tmax be a tree with maximum DEIa,b index in the class Tn,p. We show that Tmax
is Yn,p.

Assume to the contrary that Tmax is not Yn,p. Let P : x0x1x2 . . . xd be a longest path in
Tmax. Without any loss of generality, we assume that dTmax

(x1) ≥ dTmax
(xd−1). Since Tmax is
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not Yn,p, we have dTmax(v) = r ≥ 3 for some v ∈ {x2, x3, . . . , xd−1}. Let v1, v2, . . . , vr−2 be the
neighbors of v outside P .

Let T ′ = Tmax−{vv1, vv2, . . . , vvr−2}+{x1v1, x1v2, . . . , x1vr−2}. We have dTmax(x1) = s ≥
2. Then dT ′(x1) = s + r − 2, dT ′(v) = 2 and dTmax

(y) = dT ′(y) for all y ∈ V (Tmax) \ {x1, v}.
We have ecTmax

(y) ≤ ecT ′(y) for all y ∈ V (Tmax). This implies that, ecbTmax
(y) ≤ ecbT ′(y) for

b > 0 and for all y ∈ V (Tmax). Thus

DEIa,b(Tmax)−DEIa,b(T ′) ≤ ecbTmax
(x1)d

a
Tmax

(x1)− ecbT ′(x1)daT ′(x1)
+ecbTmax

(v)daTmax
(v)− ecbT ′(v)d

a
T ′(v)

≤ ecbTmax
(x1)[d

a
Tmax

(x1)− daT ′(x1)] + ecbTmax
(v)[daTmax

(v)− daT ′(v)]
= ecbTmax

(x1)[s
a − (s+ r − 2)a] + ecbTmax

(v)[ra − 2a]

≤ ecbTmax
(x1)[s

a − (s+ r − 2)a] + ecbTmax
(x1)[r

a − 2a]

= ecbTmax
(x1)[s

a − (s+ r − 2)a + ra − 2a].

If s ≥ 3 and a > 1, then by Lemma 1.1,

sa − (s+ r − 2)a + ra − 2a < 0,

which gives DEIa,b(Tmax) < DEIa,b(T
′), it contradicts our assumption.

Suppose s = 2. Since ecTmax
(v) ≤ d − 2 < ecTmax

(x1), we have ecbTmax
(v) ≤ (d − 2)b <

ecbTmax
(x1) for b > 0. In this case,

DEIa,b(Tmax)−DEIa,b(T ′) ≤ ecbTmax
(x1)[s

a − (s+ r −2)a] + ecbTmax
(v)[ra − 2a]

= ecbTmax
(x1)[2

a − ra] + ecbTmax
(v)[ra −2a]

= [ecbTmax
(v)−ecbTmax

(x1)][r
a−2a]

< 0.

Hence, DEIa,b(Tmax) < DEIa,b(T
′), it contradicts our assumption. Thus Tmax is Yn,p. We

have

DEIa,b(Yn,p) = 2a+1

n−p−1∑
r=n−p+2

2

rb+(pa+2a)(n− p)b+p(n− p+ 1)b,

for even n− p, and

DEIa,b(Yn,p) = 2a+1

n−p−1∑
r=n−p+3

2

rb+2a
(
n− p+ 1

2

)b
+(pa+2a)(n− p)b+p(n− p+ 1)b,

for odd n− p. �

Theorem 3.8. Let T ∈ Tn,p. Then for 0 < a < 1 and b < 0, we have

DEIa,b(T ) ≥ 2a+1

n−p−1∑
r=n−p+2

2

rb+(pa+2a)(n− p)b+p(n− p+ 1)b,

if n− p is even,
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DEIa,b(T ) ≥ 2a+1

n−p−1∑
r=n−p+3

2

rb+2a
(
n− p+ 1

2

)b
+(pa+2a)(n− p)b+p(n− p+ 1)b,

if n− p is odd, with equalities if and only if T is Yn,p.

Proof. We present those parts of the proof of Theorem 3.8 which are different from the proof
of Theorem 3.7.

Let Tmin be a tree with minimum DEIa,b index in the class Tn,p. We prove by contradiction
that Tmin is Yn,p.

Assume that Tmin is not Yn,p. Since ecTmin
(y) ≤ ecT ′(y), we have ecbTmin

(y) ≥ ecbT ′(y) for
b < 0 and for all y ∈ V (Tmin).

DEIa,b(Tmin)−DEIa,b(T ′) ≥ ecbTmin
(x1)d

a
Tmin

(x1)− ecbT ′(x1)daT ′(x1)
+ecbTmin

(v)daTmin
(v)− ecbT ′(v)d

a
T ′(v)

≥ ecbTmin
(x1)[d

a
Tmin

(x1)− daT ′(x1)]
+ecbTmin

(v)[daTmin
(v)− daT ′(v)]

= ecbTmin
(x1)[s

a − (s+ r − 2)a] + ecbTmin
(v)[ra − 2a]

≥ ecbTmin
(x1)[s

a − (s+ r − 2)a] + ecbTmin
(x1)[r

a − 2a]

= ecbTmin
(x1)[s

a − (s+ r − 2)a + ra − 2a].

If s ≥ 3 and 0 < a < 1, then by Lemma 1.1,

sa − (s+ r − 2)a + ra − 2a > 0,

which gives DEIa,b(Tmin) > DEIa,b(T
′).

Since ecTmin(v) ≤ d− 2 < ecTmin(x1), we have ecbTmin
(v) ≥ (d− 2)b > ecbTmin

(x1) for b < 0.
In this case,

DEIa,b(Tmin)−DEIa,b(T ′) ≥ ecbTmin
(x1)[s

a − (s+ r − 2)a]+ ecbTmin
(v)[ra − 2a]

= ecbTmin
(x1)[2

a − ra] + ecbTmin
(v)[ra − 2a]

= [ecbTmin
(v)− ecbTmin

(x1)][r
a − 2a]

> 0.

Hence, DEIa,b(Tmin) > DEIa,b(T
′), which is a contradiction. Thus Tmin is Yn,p. �

4 Conclusion and open problems
In this paper, we studied the DEIa,b index for trees of fixed order and diameter, and trees of
fixed order and the number of pendant vertices. In Section 2, we obtained upper bounds on
DEIa,b(T ) for a > 1, b ∈ R \ {0} and lower bounds on DEIa,b(T ) for 0 < a < 1, b ∈ R \ {0}, for
trees T of fixed order and diameter. In Section 3, we obtained upper bounds on DEIa,b(T ) for
a > 1, b ∈ R\{0} and lower bounds on DEIa,b(T ) for 0 < a < 1, b ∈ R\{0}, for trees T of fixed
order and the number of pendent vertices. In some of the results, we included the case a = 1
and b ∈ {−1, 1}. We also showed that all our bounds are sharp by presenting the corresponding
extremal graphs. We state open problems on the DEIa,b index of trees for future research.
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Problem 4.1. Find trees having the maximum and minimum DEIa,b index among trees of a
fixed order, where a < 0 or a ≥ 1 and b ≥ 0, and a ≤ 1 or b < 0.

Problem 4.2. Find a tree T having the minimum DEIa,b index among trees of fixed order and
diameter/trees of fixed order and number of pendant vertices, where a < 0 or a ≥ 1 and b ∈ R.

Problem 4.3. Find a tree T having the maximum DEIa,b index among trees of fixed order
and diameter/trees of fixed order and number of pendant vertices, where a ≤ 1 and b ∈ R.
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