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1. INTRODUCTION   

Adiga et al. [2] introduced the concept of graph coloring, the color matrix, and its energy. 
Their definitions are as follows: 

Color matrix of a graph. [2, 3] Let ܩ	be a vertex-colored graph of order ݊. Then the color 
matrix of ܩ is the matrix ܣ஼(ܩ) = (ܽ௜௝)௡×௡ 	for which 

															ܽ௜௝ 	= 	1	if	ݒ௜	and ݒ௝ are adjacent, 
									= −1	if	ݒ௜	and ݒ௝ are non-adjacent with ܿ(ݒ௜) =  ,(௝ݒ)ܿ
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									= 	0, otherwise, 
where	ܿ(ݒ௜)	is the color of the vertex ݒ௜ 	in G. Recall that, by definition [2], the vertices of 
the graph G are colored so that two adjacent vertices always have different colors. 

The color energy of a graph G with respect to a given coloring is the sum of the 
absolute values of eigenvalues of the color matrix ܣ஼(ܩ).  

The first results on the color energy of graphs were communicated in [2]. Joshi and 
Joseph [4, 5] established some new bounds for the color energy. Motivated by the above 
mentioned works, we got interested to develop the concepts of color energy of semigraphs. 
Sampathkumar [6] in the year 1994 generalized the definition of graph to semigraph. Some 
definitions on semigraph are as follows: 

Semigraph. A semigraph		ܩ is an ordered pair (ܸ,ܧ) where ܸ = ,ଵݒ} ,ଶݒ . . . ,  ௡} is aݒ
nonempty set whose elements called vertices of	ܩ and ܧ = {݁ଵ, ݁ଶ, . . . , ݁௠} is a set 
of		ݎ −tuples, called edges of ܩ. The edges consist of distinct vertices, for various		ݎ ≥ 2, 
satisfying the following conditions: 

i. Any two edges have at most one vertex in common. 
ii. Two edges ൫ݔଵ,ݔଶ,ݔଷ, . . . , ,ଵݕ) ௣൯ andݔ ,ଷݕ,ଶݕ . . .  ௤) are considered to beݕ,

equal if and only if   
(a)	݌ =    and	ݍ
(b) either	ݔ௜ = ௜ for 1ݕ ≤ ݅ ≤ ௜ݔ or ,݌ = ௣ି௜ାଵfor  1ݕ ≤ ݅ ≤  .݌

Thus the edge ݁௜ = ,ଷݔ,ଶݔ,ଵݔ) . . . , ,௧ିଵݔ,௧ݔ) ௧) is same as the edgeݔ . . .  where		ଵ)ݔ,
,ଶݔ	are said to be the end vertices, whereas	௧ݔ and	ଵݔ ,ଷݔ . . .  are called the middle	௧ିଵݔ,
vertices of the edge	݁௜. 

Adjacent vertices. Two vertices in a semigraph	ܩ	are said to be adjacent if they belong to 
the same edge and are said to be consecutively adjacent if in addition they are consecutive 
in order as well.  

Adjacent edges. Two edges	݁௜ and ௝݁	in a semigraph	ܩ are said to be adjacent if they have 
a common vertex. 

Degrees. For a vertex ݒ in a semigraph ܩ we define various types of degrees as follows: 
i. Degree:	deg  .as an end vertex ݒ is the number of edges having ݒ
ii. Edge degree:	deg௘ݒ is the number of edges containing ݒ. 
iii. Adjacent degree:	deg௔ݒ is the number of vertices adjacent to ݒ. 
iv. Consecutive adjacent degree:	deg௖௔ݒ	is the number of vertices which are 

consecutively adjacent to ݒ. 
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Graphs associated with a given semigraph. If ܩ =  ,be a semigraph of order ݊ and	(ܧ,ܸ)
size ݉, then three different graphs each having same vertex set ܸ, pertain to the given 
semigraph ܩ as follows:  

 The end vertex graph	ܩ௘: Two vertices in ܩ௘ are adjacent if and only if they are end 
vertices of an edge in ܩ. 

 The adjacency graph	ܩ௔: Two vertices in ܩ௔	are adjacent if and only if they are 
adjacent vertices in ܩ. 

 The consecutive adjacency graph	ܩ௖௔: Two vertices in ܩ௖௔	are adjacent if and only 
if they are consecutive adjacent vertices in ܩ. 

 
Vertex coloring of a semigraph. A coloring of a semigraph	ܩ =  is an assignment (ܧ,ܸ)
of colors to its vertices, such that not all vertices in an edge are equally colored. A strong 
coloring of ܩ is a coloring of vertices such that no two adjacent vertices are equally 
colored, whereas an e-coloring is a coloring of vertices such that no two adjacent end 
vertices of an edge are equally colored. 

As ݎ-coloring (ݎ-strong coloring, ݎ-݁-coloring) uses ݎ colors, and partitions ܸ into 
  .respective color classes, each class consisting of vertices with the same color	ݎ

The chromatic number	χ = χ(ܩ)	of ܩ is the minimum number of colors needed in 
any coloring of ܩ. Similarly we defined the strong chromatic number	χ௦ = χ௦(ܩ), and 
the	݁-chromatic number	χ௘ = χ௘(ܩ)	of ܩ. Clearly, a strong coloring is an ݁-coloring and an 
݁-coloring is a coloring. 
 
2. COLOR ENERGY OF SEMIGRAPHS 

Let ܩ =  be a vertex-colored semigraph having ݊ vertices and ݉ edges. Some	(ܧ,ܸ)
definitions relevant to its spectral properties are as follows: 

Definition 1. (Color matrix of a semigraph) Let ܩ =  be a vertex-colored semigraph	(ܧ,ܸ)
order ݊ and size ݉. Denote by ܿ(ݒ௜) the color of the vertex	ݒ௜. Then the color matrix of the 
semigraph ܣ஼(ܩ) = (ܽ௜௝)௡×௡ 	is defined as 

																	ܽ௜௝		= 1       if	ݒ௜	and ݒ௝ are adjacent. 
          = −1    if	ݒ௜ 	and ݒ௝ are non-adjacent with ܿ(ݒ௜) =  .(௝ݒ)ܿ
          = 0,     otherwise. 

Recall that, in contrast to the case of vertex-colored graphs, adjacent vertices of a 
semigraph may have equal colors. On the other hand, it is clear that the color matrix of a 
semigraph	ܩ is the color matrix of the adjacency graph	ܩ௔	associated with ܩ. 

 
Definition 2. (Color spectrum of a semigraph) If ܣ஼(ܩ)	be color matrix of a colored 
semigraph	ܩ. Then its eigenvalues ξଵ, ξଶ, ξଷ, . . . , ξ௡ 	are called color eigenvalues. The color 
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matrix ܣ஼(ܩ)	is symmetric and hence all of color eigenvalues are real. If the distinct color 
eigenvalues of	ܣ஼(ܩ)	are ξଵ > ξଶ > ξଷ >. . . > ξ௥,	ݎ ≤ ݊		with their multiplicities  
݉ଵ	,݉ଶ, . . . ,݉௥ then we have  

௖ܿ݁݌ܵ ܩ	 = ൬ ξଵ ξଶ … ξ௥
݉ଵ ݉ଶ … ݉௥

൰, 

called the color spectrum of a semigraph. 
 
Definition 3. (Color energy of semigraph) The color energy of semigraph	ܩ is defined as  

														Ε௖(ܩ) = ෍|ξ௜|.
௡

௜ୀଵ  
 

This definition parallels the definition of the ordinary graph energy [1], and also of 
the color energy of a simple graph [2]. For a symmetric matrix, singular values are same as 
their eigenvalues. Therefore, the present definition of color energy Ε௖(ܩ) of semigraph is 
consistent with the matrix energy of a semigraph [7], as well as with the definition of 
distance matrix and energy of a semigraph [8]. 

Suppose that ܩ =  be (ܩ)஼ܣ is a semigraph of order n, and having m edges. Let (ܧ,ܸ)
the adjacency matrix with respect to a given coloring of ܩ =  Consider the .(ܧ,ܸ)
characteristic polynomial of  ܣ஼(ܩ), 
 ஼ܲ(ܩ, ξ) = det(ξ	ܫ − ((ܩ)஼ܣ = ܽ଴ξ௡ + ܽଵξ௡ିଵ + ܽଶξ௡ିଶ + ܽଷξ௡ିଷ + ⋯+ ܽ௡. 
 
Lemma 1. [11] If A is a real or complex square matrix of order n with eigenvalues 
ξଵ, ξଶ, ξଷ, . . . , ξ௡, then for each ݇ ∈ {1, 2, 3, . . . ,݊}, the number ܵ௞ = (−1)௞ܽ௞ = the sum of 
the ݇ × ݇ principal minors of A, where ܽ௞’s are the coefficients of the characteristic 
polynomial of ܣ and ܵ௞  the kth symmetric function of ξଵ, ξଶ, ξଷ, . . . , ξ௡, is the sum of the 
products of  the eigenvalues taken k at a time.  
 
Theorem 1.  Using the notations given above, we have  

(a) ܽ଴ = 1. 
(b) ܽଵ = 0. 

(c) ܽଶ = −∑ ଶܥ
|௘೔|௠

௜ୀଵ - Number of pairs of non-adjacent vertices receiving the 
same color in	ܩ. 

(d) ܽଷ = 	−2(Number of triangles of ܩ + No of triplet of which two adjacent 
vertices with same color -No of triplet of which two non adjacent vertices 
with same color - Number of non-adjacent triplet having same color in ܩ). 

 
Proof. (a) It is clear from the definition of the characteristic polynomial of ܣ஼(ܩ). i.e. 
஼ܲ(ܩ, ξ) = det(ξ	ܫ − that ܽ଴ ,((ܩ)஼ܣ = 1. 
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(b) Since the diagonal elements of ܣ஼(ܩ)	are all zeros, ܽଵ = 0. 
(c) (−1)ଶܽଶ =Sum of all the 2 × 2	principal minors of 

(ܩ)஼ܣ = ∑ ቚ
ܽ௜௜ ܽ௜௝
௝ܽ௜ ௝ܽ௝

ቚଵஸ௜ழ௝ஸ௡ = ∑ ൫ܽ௜௜ ௝ܽ௝ − ܽ௜௝ ௝ܽ௜൯ଵஸ௜ழ௝ஸ௡ = −∑ ܽଶ௜௝ଵஸ௜ழ௝ஸ௡ . 

ܽଶ = −∑ ଶܥ
|௘೔|௠

௜ୀଵ - Number of pairs of non-adjacent vertices receiving the same color in ܩ. 
(d) ܽଷ = (−1)ଷSum of all the 3 × 3	principal minors of  

(ܩ)஼ܣ = (−1)ଷ ෍ อ
ܽ௜௜ ܽ௜௝ ܽ௜௞
௝ܽ௜ ௝ܽ௝ ௝ܽ௞
ܽ௞௜ ܽ௞௝ ܽ௞௞

อ
ଵஸ௜ழ௝ழ௞ஸ௡

= −2෍ܽ௜௝ ௝ܽ௞ܽ௞௜  

= 	−2(Number of triangles of ܩ + No of triplet of which two adjacent vertices with same 
color - No of triplet of which two non adjacent vertices with same color - Number of non-
adjacent triplet having same color in ܩ).                  ■ 
 
Lemma 2. If ξଵ, ξଶ, ξଷ, . . . , ξ௡ are the eigenvalues of the color matrix ܣ஼(ܩ) of a semigraph 
∑ of order n, having m edges, then (ܧ,ܸ)ܩ ξ݅

2݊
݅=1 = 2	 ቂ∑ 2ܥ

|݁݅| + ݉′ܿ݉
݅=1 ቃ	where ݉′௖ 	is the 

number of pairs of non-adjacent vertices receiving the same color and |݁௜|is the number of 
vertices in the edge ݁௜ ∈  .ܧ

Proof. Consider 

	෍ ξ݅
2

݊

݅=1
		= 	෍ቀ2ܿܣቁ

݅݅

݊

݅=1
= 		෍෍݆ܽ݅

݊

݆=1

݊

݅=1
݆ܽ݅ 

																																																															= 		 ∑ ∑ ܽ௜௝ଶ௡
௝ୀଵ

௡
௜ୀଵ (As ܣ஼(ܩ) is a symmetric matrix) 

= 		2෍൫ܽ௜௝൯
ଶ

௜ழ௝

+ ෍(ܽ௜௜)ଶ
௡

௜ୀଵ

																		 

																				= 2 ቂ∑ ଶܥ
|௘೔|௠

௜ିଵ + ݉′௖ቃ(Since∑ (ܽ݅݅)2 = 0݊
݅=1 ).               ■ 

 
Lemma 3. Let ܩ =  is	be a colored semigraph having n vertices and m edges. If |݁௜|	(ܧ,ܸ)
the number of vertices in the edge ݁௜ ∈                                                     then ,ܧ

൭෍ ଶܥ
|௘೔| + ݉′௖

௠

௜ୀଵ

൱ ≥ ݉. 

Equality holds when ܩ is a graph.  

Proof. Clearly, for a connected semigraph, |݁௜| ≥ 	2	Thus,	 ଶܥ
|௘೔| ≥ 1, i.e. ∑ 2ܥ

|݁݅|݉
݅=1 ≥ ݉. 

Hence ∑ 2ܥ
|݁݅| +݉′ܿ݉

݅=1 ≥ ݉.
 
                                                                                                ■ 
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Lemma 4. Let ܩ =  be a connected semigraph having n vertices and m edges. If	(ܧ,ܸ)
|݁௜|	is the number of vertices in the edge ݁௜ ∈ ݊	then ,ܧ ≤ 2∑ ଶܥ

|௘೔|௠
௜ୀଵ . 

Proof. Clearly ݊ ≤ ∑ deg௘ݒ௜ =௡
௜ୀଵ ∑ |݁௜|௠

௜ୀଵ ≤ 2∑ ଶܥ
|௘೔| .௠

௜ୀଵ                                                 ■ 
 
Theorem 2. If the energy of a colored semigraph is a rational number, then it must be an 
even positive integer. 

Proof. From the [12, Theorem 2.12], we have if ξଵ, ξଶ, ξଷ, . . ., ξ௡ are color eigenvalues of 
ܩ	the adjacency matrix of a semigraph ,(ܩ)஼ܣ =  of order ݊ then, Trace of (ܧ,ܸ)
|(ܩ)஼ܣ| = 0 = ∑ ξ௜௡

௜ୀଵ . Of these eigenvalues,	ξଵ, ξଶ, ξଷ, . . . , ξ௥ 	are positive and the rest non-
positive. Thus we have 

(ܩ)஼ܧ	 = ෍|ξ௜|
௡

௜ୀଵ

																 

																																													= (ξଵ + 	 ξଶ, +⋯+ ξ௥) − (ξ௥ାଵ + ξ௥ାଶ + ⋯+ ξ௡) 
																																		= 2(ξଵ + 	 ξଶ, +⋯+ ξ௥). 

The sum ξଵ + ξଶ, +⋯+ ξ௥ is an algebraic integer as ξଵ, ξଶ, ξଷ, . . . , ξ௥ 	are algebraic 
integers. Hence 2(ξଵ + ξଶ, +⋯+ ξ௥) must be an even positive integer if ܧ஼(ܩ)is rational. 

                                                                                                                                    ■ 
 

3. SOME BOUNDS FOR COLOR ENERGY OF A SEMIGRAPH 
 

Theorem 3. Let ܩ =   be a colored semigraph having n vertices and m edges. Then	(ܧ,ܸ)

(ܩ)௖ܧ 	≤ ට2݊ ቀ∑ ଶܥ
|௘೔|௠

௜ୀଵ + ݉′௖ቁ, 

where	݉′௖ is the number of pairs of non-adjacent vertices in ܩ	receiving the same color. 
 
Proof. The color matrix of a semigraph	ܣ஼(ܩ) is symmetric and hence its color 
eigenvalues are real and can be ordered as ξଵ 	≥ ξଶ ≥ ξଷ ≥ ⋯ ≥	 ξ௡. Appling the Cauchy-
Schwarz inequality, we have (∑ ௜௡ݒ௜ݑ

௜ୀଵ )ଶ 	≤ 	 (∑ ௜௡ݑ
௜ୀଵ )ଶ(∑ ௜௡ݒ

௜ୀଵ )ଶ. Substituting ݑ௜ = 1, 
௜ݒ = |ξ௜| in the above inequality and by Lemma 2, we have 

ଶ[(ܩ)௖ܧ] = ൭෍|ξ௜|
௡

௜ୀଵ

൱
ଶ

≤ 		݊ ൭෍|ξ௜|ଶ
௡

௜ୀଵ

൱ = ݊෍ξ௜ଶ
௡

௜ୀଵ

= 2݊ ൭෍ ଶܥ
|௘೔|

௠

௜ୀଵ

+ ݉ᇱ
௖൱. 

Hence,	ܧ௖(ܩ) ≤ ට2n ቀ∑ ଶܥ
|ୣ౟|୫

୧ୀଵ + ݉ᇱ
௖ቁ.                                                                            ■ 

 
Theorem 4. Let ܩ =  be a colored semigraph having n vertices and m edges, and let	(ܧ,ܸ)
݉′௖ 	be the number of pairs of non-adjacent vertices receiving the same color. Then  
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(ܩ)௖ܧ 		≥ 				ට2	 ቀ∑ ଶܥ
|௘೔|௠

௜ୀଵ + ݉′௖ቁ + ݊(݊ − 1)Δଶ ௡ൗ ,  

where Δ = |det	ܣ௖(ܩ)|. 

Proof. In view of Definition 3 and Lemma 2 we have, 

ଶ[(ܩ)௖ܧ] = ൭෍|ξ௜|
௡

௜ୀଵ

൱
ଶ

= ෍ξ௜ଶ
௡

௜ୀଵ

		+ ෍|ξ௜|
௜ஷ௝

หξ௝ห.
 

By applying ܯܣ ≥  we have ,ܯܩ

1
݊(݊ − 1)෍|ξ௜|

௜ஷ௝

หξ௝ห ≥ 	ቌෑ|ξ௜|หξ௝ห
௜ஷ௝

ቍ

ଵ
௡(௡ିଵ)ൗ

= ቌෑ|ξ௜|ଶ(௡ିଵ)

௜ஷ௝

ቍ

ଵ
௡(௡ିଵ)ൗ

		 

																																				= 		 ቌෑ|ξ௜|
௜ஷ௝

ቍ

ଶ ௡ൗ

																																																															 

= 		 Δଶ ௡ൗ ,																																										 
 

i.e.                               																					∑ |ξ௜||ξ௜| ≥ ݊(݊ − 1)Δଶ ௡ൗ .௜ஷ௝ 					 
                           

Thus,							[ܧ௖(ܩ)]ଶ ≥ ∑ ξ௜
ଶ௡

௜ୀଵ + ݊(݊ − 1)Δଶ ௡ൗ = 2	 ቀ∑ ଶܥ
|௘೔|௠

௜ୀଵ + ݉ᇱ
௖ቁ + ݊(݊ − 1)Δଶ ௡ൗ . 

Therefore		ܧ௖(ܩ) ≥ ට2	 ቀ∑ ଶܥ
|௘೔|௠

௜ୀଵ + ݉′௖ቁ + ݊(݊ − 1)Δଶ ௡ൗ .                                             ■ 

 
Theorem 5. Let ܩ =  be a colored semigraph of order ݊ and size ݉. Let the color	(ܧ,ܸ)
eigenvalues of ܣ஼(ܩ)	be ξଵ ≥	 ξଶ ≥ ξଷ ≥ ⋯ ≥	 ξ௡. Then 

(ܩ)௖ܧ ≤ |ξଵ| + ට(݊ − 1) ቂ2	 ቀ∑ ଶܥ
|௘೔|௠

௜ୀଵ + ݉′௖ቁ − ξଵଶቃ, 

where	݉′௖ is the number of pairs of non-adjacent vertices in ܩ receiving the same color. 
 
Proof. Let	ξଵ 	≥ ξଶ ≥ ξଷ ≥ ⋯ ≥	 ξ௡ 	be the color eigenvalues of	ܣ஼(ܩ). Appling the 
Cauchy-Schwarz inequality on to vectors (|ξଶ|	, |ξଷ|	, . . ., |ξ௡|)	and (1, 1, . . . , 1)	with 
		݊ − 1	entries,  
															(∑ |ξ௜|௡

௜ୀଶ )ଶ ≤		 (݊ − 1)(∑ |ξ௜|ଶ௡
௜ୀଶ ),

 i.e.		∑ |ξ௜|௡
௜ୀଶ ≤ ඥ(݊ − 1)(∑ |ξ௜|ଶ௡

௜ୀଶ ),
 i.e.		∑ |ξ௜|௡

௜ୀଵ − |ξଵ| ≤ ඥ(݊ − 1)(∑ |ξ௜|ଶ௡
௜ୀଶ ).

 By Definition 3 and Lemma 2, we have 
 

(ܩ)௖ܧ ≤ |ξଵ| + ට(݊ − 1) ቂ2	 ቀ∑ ଶܥ
|௘೔|௠

௜ୀଵ + ݉′௖ቁ − ξଵଶቃ.                                                 ■ 
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Theorem 6. Let ܩ = be a colored semigraph of order ݊ and size ݉. Let ξ୫ୟ୶	(ܧ,ܸ) 	be the 
largest absolute value of a color eigenvalue. Then 

(ܩ)௖ܧ 		≥
ଶ൤∑ ஼మ

ห೐೔ห ା௠ᇱ೎೘
೔సభ ൨

ஞౣ౗౮
, 

where	݉′௖ is the number of pairs of non-adjacent vertices in ܩ receiving the same color. 
 
Proof. Let ξ୫ୟ୶ 	be the largest absolute value of the color eigenvalue of ܣ஼(ܩ). 

Then	ξ୫ୟ୶|ξ௜| ≥ ξ௜ଶ. Thus	∑ ξ୫ୟ୶|ξ௜|௡
௜ୀଵ ≥ ∑ ξ௜ଶ௡

௜ୀଵ , i.e. ξ୫ୟ୶ ∑ |ξ௜|௡
௜ୀଵ ≥ 2 ቂ∑ ଶܥ

|௘೔|௠
௜ୀଵ +

݉′௖൧, by Lemma 2. Hence 

(ܩ)௖ܧ       ≥
ଶ൤∑ ஼మ

ห೐೔ห೘
೔సభ ା௠ᇱ೎൨

ஞౣ౗౮
.                                                     ■ 

 
Theorem 7. Let ܩ =  be a colored semigraph of order ݊, size ݉, and ݉′௖ be the	(ܧ,ܸ)
number of pairs of non-adjacent vertices in ܩ receiving the same color. Then 

2	ටቀ∑ ଶܥ
|௘೔|௠

௜ୀଵ + ݉′௖ቁ ≤ (ܩ)௖ܧ ≤ 2 ቀ∑ ଶܥ
|௘೔|௠

௜ୀଵ + ݉′௖ቁ. 
Proof. Consider 
ଶ[(ܩ)௖ܧ] = 	 (∑ |ξ௜|௡

௜ୀଵ )ଶ = ∑ |ξ௜|ଶ௡
௜ୀଵ 		+ ∑ |ξ௜|௜ஷ௝ หξ௝ห = ∑ |ξ௜|ଶ௡

௜ୀଵ + 2∑ |ξ௜||ξ௝|௜ழ௝ .         (1) 
By Lemma 1, we have

 ܽଶ = (−1)ଶ ×Sum of all the 2 × 2	principal minors of  ܣ஼(ܩ) = ∑ ξ௜ξ௝ଵஸ௜ழ௝ஸ௡ .
 Therefore, ∑ ξ݅ξ݅1≤݅<݆≤݊ = ∑ ฬ

ܽ݅݅ ݆ܽ݅
݆ܽ݅ ݆݆ܽฬ1≤݅<݆≤݊ = ∑ (ܽ݅݅ ݆݆ܽ −݆ܽ݅ ݆ܽ݅ )1≤݅<݆≤݊ , 

As color matrix	ܣ஼(ܩ) is symmetric, ܽ௜௝ = ௝ܽ௜	and	ܽ௜௜ = 0,∀݅. Thus
 ∑ ξ௜ξ௝ = −∑ ܽ௜௝ ௝ܽ௜ଵஸ௜ழ௝ஸ௡ଵஸ௜ழ௝ஸ௡ = −∑ ൫ܽ௜௝൯

ଶ
ଵஸ௜ழ௝ஸ௡ = − ቂ∑ ଶܥ

|௘೔| + ݉′௖௠
௜ୀଵ ቃ. 

We know that, ∑ |ξ݅||ξ݆|݅<݆ ≥ |∑ ξ݅ξ݆݅<݆ |. Thus, 

																																																											∑ |ξ௜||ξ௝|௜ழ௝ ≥ ቚ∑ ଶܥ
|௘೔| + ݉ᇱ

௖
௠
௜ୀଵ ቚ.                                  (2) 

Using equations (1) and (2) along with Lemma 2, we get 
ଶ[(ܩ)௖ܧ] ≥ 4|∑ ଶܥ

|௘೔|௠
௜ୀଵ + ݉′௖|.

 Taking positive square-root, we get
 

(ܩ)௖ܧ ≥ 2ටቚ∑ ଶܥ
|௘೔| + ݉ᇱ

௖
௠
௜ୀଵ ቚ.                                          (3)

 
By Lemma 4 we have, ݊ ≤ 2∑ ଶܥ

|௘೔|௠
௜ୀଵ ≤ 2 ቂ∑ ଶܥ

|௘೔|௠
௜ୀଵ + ݉′௖ቃ. Thus,  

2݊ቂ∑ ଶܥ
|௘೔| + ݉′௖௠

௜ୀଵ ቃ ≥ 4ቂ∑ ଶܥ
|௘೔| + ݉′௖௠

௜ୀଵ ቃ
ଶ
.
 Taking positive square-root, we get
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   ට2݊ ቂ∑ ଶܥ
|௘೔|௠

௜ୀଵ + ݉′ቃ ≤ 2 ቂ∑ ଶܥ
|௘೔|௠

௜ୀଵ + ݉ᇱ
௖ቃ. 

Thus by using Theorem 3, 

(ܩ)௖ܧ ≥ 2 ቂ∑ ଶܥ
|௘೔| + ݉ᇱ

௖
௠
௜ୀଵ ቃ.																			               (4) 

Hence, from (3) and (4) we have   

2ට|∑ ଶܥ
|௘೔| + ݉′௖௠

௜ୀଵ | ≤ (ܩ)௖ܧ ≤ 2 ቂ∑ ଶܥ
|௘೔| + ݉ᇱ

௖
௠
௜ୀଵ ቃ.																					■ 
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