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Let 𝐺 = (𝑉. 𝐸) be a simple graph with vertex set 𝑉 and edge set 

𝐸. The Sombor index of the graph 𝐺 is a degree-based topological 

index, defined as 𝑆𝑂(𝐺) = ∑ √𝑑(𝑢)2 + 𝑑(𝑣)2
𝑢𝑣∈𝐸 ,  in which 

𝑑(𝑥) is the degree of the vertex 𝑥 ∈ 𝑉 for 𝑥 = 𝑢. 𝑣. In this paper, 

we characterize the extremal trees with given degree sequence that 

minimize and maximize the Sombor index. 
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1. INTRODUCTION  

In [1], Gutman defined a new vertex degree-based topological index, named the Sombor 

index, and defined it for a graph 𝐺 as follows 

                                             𝑆𝑂(𝐺) = ∑ √𝑑(𝑢)2 + 𝑑(𝑣)2
𝑢𝑣∈𝐸 . 

where 𝑑(𝑢) and 𝑑(𝑣) denote the degree of vertices 𝑢 and 𝑣 in 𝐺, respectively. Some chemical 

applications of the Sombor indices are studied in [2, 3]. Das and Gutman [4] obtained sharp 

bounds on the Sombor index of trees in terms of the order, independence number, and the 

number of pendant vertices. The minimum bounds on the Sombor index of the unicyclic 

graphs with fixed diameter are obtained in [5]. Chen et al. [6] determined the extremal values 

of the Sombor index of trees with some given parameters such as matching number, pendant 

vertices, diameter, segment number, and branching number. Movahedi and Akhbari [7] 
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introduced the entire Sombor index of a graph and obtained the sharp bounds for the entire 

Somber index.  

In recent years, the extremal problem with respect to topological indices has received 

much attention [8]. Delorme et al. [9] proposed an algorithm for determining an extremal 

tree with fixed degree sequence that maximizes the general Randić index. Wang [10] 

characterized the extremal trees with given degree sequence for the general Randić index. 

Xing et al. [11] characterized the extremal trees with fixed degree sequence that maximize 

and minimize the atom-bond connectivity index. 

In [1], the Sombor index is minimized by the path and maximized by the star among 

general trees of the same size. Zhou et al. [12] obtained the extremal values of the Sombor 

index of trees and unicyclic graphs with a given maximum degree. In [13] a sharp upper 

bound for the Sombor index and the reduced Sombor index among all molecular trees with 

fixed numbers of vertices is obtained, and those molecular trees achieving the extremal value 

are characterized. 

In [14] the extremal graphs with respect to the Sombor index among all the trees of 

the same order with a given diameter are characterized. Réti et al. [15] characterized graphs 

with the maximum Sombor index in the classes of all connected unicyclic, bicyclic, tricyclic, 

tetracyclic, and pentacyclic graphs of a given order. 

In this paper, we focus on the following natural extremal problem of the Sombor 

index. 

 

Problem 1. Find extremal trees of Sombor indices with given degree sequence and 

characterize all extremal trees which attain the extremal values. 

 

Let 𝑇 = (𝑉. 𝐸) be a simple and undirected tree with vertex set 𝑉(𝑇) = {𝑣1. … . 𝑣𝑛} 

and the edge set 𝐸(𝑇) = {𝑒1. … . 𝑒𝑚}. The set 𝑁𝑇(𝑢) = {𝑣 ∈ 𝑉 |𝑢𝑣 ∈ 𝐸} is called the 

neighborhood of vertex 𝑢 ∈ 𝑉 in tree 𝑇. The number of edges incident to vertex 𝑢 in 𝑇 is 

denoted 𝑑(𝑢). A leaf is a vertex with degree 1 in tree 𝑇. The distance between vertices 𝑢 and 

𝑣 is the minimum number of edges between 𝑢 and 𝑣 and is denoted by 𝑑(𝑢. 𝑣). The degree 

sequence of the tree is the sequence of the degrees of non-leaf vertices arranged in non-

increasing order. Therefore, we consider (𝑑1. 𝑑2. … . 𝑑𝑘) as a degree sequence of the tree 𝑇 

where 𝑑1 ≥  𝑑2 ≥ ⋯ ≥  𝑑𝑘 ≥  2. A tree is called a maximum (minimum) optimal tree if it 

maximizes (minimizes) the Sombor index among all trees with a given degree sequence. 

In this paper, we investigate the extremal trees which attain the maximum and 

minimum Sombor index among all trees with given degree sequence. 

 

2. PRELIMINARIES 

In this section, we prove some lemmas that are used in the next main results. 
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Lemma 2.1. For function 𝑔(𝑥. 𝑦) = √𝑥2 + 𝑦2, if 𝑥 ≤ 𝑦 then 𝑔(𝑥. 1) ≤ 𝑔(𝑦. 1). 

Proof. If 𝑥 ≤ 𝑦, then 𝑥2 + 1 ≤  𝑦2 + 1 and consequently, √𝑥2 + 1 ≤ √𝑦2 + 1. Therefore, 

𝑔(𝑥. 1) ≤ 𝑔(𝑦. 1).                                                                                                                  ■ 

Lemma 2.2. Let 𝑓(𝑥) = √𝑥2 + 𝑎2 − √𝑥2 + 𝑏2 with 𝑎, 𝑏, 𝑥 ≥ 1. Then 𝑓(𝑥) is an increasing 

function for every 𝑎 ≤ 𝑏 and a decreasing function for every 𝑎 ≥ 𝑏. 

Proof. We have that 𝑓′(𝑥) =
𝑥

√𝑥2+𝑎2
−

𝑥

√𝑥2+𝑏2
 . Define the function 𝑓(𝑦) =

𝑥

√𝑥2+𝑦2
, where 

𝑦 ≥ 1. The derivative of this function is 𝑓′(𝑦) =
−𝑥𝑦

(𝑥2+𝑦2)√𝑥2+𝑦2
< 0. Therefore, 𝑓(𝑦) is a 

decreasing function for every 𝑦 ≥ 1. Hence, if 𝑎 ≤ 𝑏, 
𝑥

√𝑥2+𝑎2
= 𝑓(𝑎) ≥ 𝑓(𝑏) =

𝑥

√𝑥2+𝑏2
. 

Consequently, 𝑓′(𝑥) > 0 and the function 𝑓(𝑥) is an increasing function for every 𝑥 ≥ 1. 

Similarity, if 𝑎 ≥ 𝑏, then 𝑓(𝑥) is a decreasing function for every 𝑥 ≥ 1.                                           ■ 

Lemma 2.3. Let ℎ(𝑥) = √𝑥2 + 𝑦2 with 𝑦 ≥ 1. Then ℎ(𝑥) is an increasing function for every 

𝑥 ≥ 1. 

Proof. We have ℎ′(𝑥) =
𝑥

√𝑥2+𝑦2
. Since 𝑥 ≥ 1, then ℎ′(𝑥) > 0 and function ℎ(𝑥) is an 

increasing function for every 𝑥 ≥ 1.                                                                                      ■ 

 

3. EXTREMAL TREES WITH THE MAXIMUM SOMBOR INDEX 

In this section, we characterize the extremal trees with maximum Sombor index among the 

trees with given degree sequence. We propose a technique to construct these trees. To do 

this, we first state some properties of a maximum optimal tree. 

 

Theorem 3.1. Let 𝑇 be a maximum optimal tree with a path 𝑣0 𝑣1 𝑣2 … 𝑣𝑘 𝑣𝑘+1 in 𝑇, where 

𝑣0 and 𝑣𝑘+1 are leaves. For 𝑖 ≤
𝑘+1

2
  and 𝑖 + 1 ≤ 𝑗 ≤  𝑘 − 𝑖 + 1, 

i. if 𝑖 is odd, then 𝑑(𝑣𝑖) ≥ 𝑑(𝑣𝑘−𝑖+1) ≥ 𝑑(𝑣𝑗), 

ii. if 𝑖 is even, then 𝑑(𝑣𝑖) ≤ 𝑑(𝑣𝑘−𝑖+1) ≤ 𝑑(𝑣𝑗), 

 

Proof. Let 𝑇 be a maximum optimal tree with the degree sequence 𝐷. We prove the result 

by induction on 𝑖. For 𝑖 = 1, we show that 𝑑(𝑣1) ≥ 𝑑(𝑣𝑘) ≥  𝑑(𝑣𝑗) where 2 ≤ 𝑗 ≤ 𝑘. We 

suppose for contradiction that 𝑑(𝑣1) < 𝑑(𝑣𝑗) for some 2 ≤ 𝑗 ≤ 𝑘. We consider a new tree 

𝑇′ obtained from 𝑇 by changing edges 𝑣0𝑣1 and 𝑣𝑗  𝑣𝑗+1  to edges 𝑣0𝑣𝑗 and 𝑣1𝑣𝑗+1 such that 
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no other edges are changed. Note that 𝑇 and 𝑇′ have the same degree sequence. Therefore, 

using Lemmas 2.1-2.3, and since 𝑑(𝑣𝑗+1) > 1, we have 

                    𝑆𝑂(𝑇′) − 𝑆𝑂(𝑇) = √𝑑(𝑣0)2 + 𝑑(𝑣𝑗)2 + √𝑑(𝑣1)2 + 𝑑(𝑣𝑗+1)2 

                                                    − (√𝑑(𝑣0)2 + 𝑑(𝑣1)2 + √𝑑(𝑣𝑗)
2

+ 𝑑(𝑣𝑗+1)
2

) 

                                                    = (√𝑑(𝑣𝑗)
2

+ 1 − √𝑑(𝑣1)2 + 1) 

                                                   + (√𝑑(𝑣1)2 + 𝑑(𝑣𝑗+1)
2

− √𝑑(𝑣𝑗)
2

+ 𝑑(𝑣𝑗+1)
2

) 

                                                   = 𝑓(1) − 𝑓 (𝑑(𝑣𝑗+1)) > 0. 

which is a contradiction with the maximum optimality 𝑇. Thus, 𝑑(𝑣1) ≥ 𝑑(𝑣𝑗) for every 2 ≤

𝑗 ≤ 𝑘. Similarity, we can get 𝑑(𝑣1) ≥ 𝑑(𝑣𝑘) and 𝑑(𝑣𝑘) ≥ 𝑑(𝑣𝑗). Therefore, we have 

𝑑(𝑣1) ≥ 𝑑(𝑣𝑘) ≥ 𝑑(𝑣𝑗) where 2 ≤  𝑗 ≤ 𝑘. So, we suppose that the result holds for smaller 

values of 𝑖. 

If 𝑖 ≥ 2 is even, then 𝑖 − 1 is odd and by the induction hypothesis, 𝑑(𝑣𝑖−1) ≥

𝑑(𝑣𝑘−𝑖+1) ≥ 𝑑(𝑣𝑗) for 𝑖 + 1 ≤ 𝑗 ≤ 𝑘 − 𝑖 + 1. We suppose for contradiction that 𝑑(𝑣𝑖) >

𝑑(𝑣𝑗) for some 𝑖 + 1 ≤ 𝑗 ≤  𝑘 − 𝑖 + 1. We consider a new tree 𝑇′′ obtained from 𝑇 by 

changing edges 𝑣𝑖−1𝑣𝑖 and 𝑣𝑗𝑣𝑗+1 to edges 𝑣𝑖−1𝑣𝑗 and 𝑣𝑖𝑣𝑗+1 with the degree sequence 𝐷. 

Also, in tree 𝑇′′, other edges are the same edges in tree 𝑇. 

By the induction hypothesis, 𝑑(𝑣𝑖−1) ≥ 𝑑(𝑣𝑗+1). Therefore, by applying Lemma 2.2, 

we have 

                𝑆𝑂(𝑇′′) − 𝑆𝑂(𝑇) = √𝑑(𝑣𝑖−1)2 + 𝑑(𝑣𝑗)2 + √𝑑(𝑣𝑖)2 + 𝑑(𝑣𝑗+1)2 

                                               − (√𝑑(𝑣𝑖−1)2 + 𝑑(𝑣𝑖)2 + √𝑑(𝑣𝑗)
2

+ 𝑑(𝑣𝑗+1)
2

) 

                                               = (√𝑑(𝑣𝑖−1)2 + 𝑑(𝑣𝑗)
2

− √𝑑(𝑣𝑖−1)2 + 𝑑(𝑣𝑖)2) 

                                               + (√𝑑(𝑣𝑗+1)
2

+ 𝑑(𝑣𝑖)2 − √𝑑(𝑣𝑗+1)
2

+ 𝑑(𝑣𝑗)
2

) 

                                               = 𝑓(𝑑(𝑣𝑖−1)) − 𝑓 (𝑑(𝑣𝑗+1)) > 0, 

This contradiction with the maximum optimality of 𝑇. Therefore, 𝑑(𝑣𝑖) ≤ 𝑑(𝑣𝑗) for 

𝑖 + 1 ≤  𝑗 ≤  𝑘 − 𝑖 + 1. Similarity, we have 𝑑(𝑣𝑖) ≤  𝑑(𝑣𝑘−𝑖+1) and 𝑑(𝑣𝑘−𝑖+1) ≤ 𝑑(𝑣𝑗). 

Consequently, for 𝑖 even, 𝑑(𝑣𝑖) ≤ 𝑑(𝑣𝑘−𝑖+1) ≤ 𝑑(𝑣𝑗) where 𝑖 + 1 ≤  𝑗 ≤  𝑘 − 𝑖 + 1. For 

odd 𝑖 >  2, with the similar technique, we can get 𝑑(𝑣𝑖) ≥  𝑑(𝑣𝑘−𝑖+1 ) ≥ 𝑑(𝑣𝑗) for          𝑖 +

1 ≤ 𝑗 ≤ 𝑘 −  𝑖 + 1.                                                                                                                  ■ 
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Suppose that 𝐿𝑖 denotes the set of vertices adjacent to the closet leaf at a distance 𝑖. 

Thus, 𝐿0 and 𝐿1 denote the set of leaves and the set of vertices that are adjacent to the leaves. 

Let 𝑑𝑚 = 𝑚𝑖𝑛{𝑑(𝑢) ∶  𝑢 ∈ 𝐿1} and 𝐿1
𝑚 be the set of leaves whose adjacent vertices have 

degree 𝑑𝑚 in 𝑇. We suppose that 𝐿1
𝑚̅̅ ̅̅  denote the set of leaves 𝑣 such that 𝑣 ∉ 𝐿1

𝑚. 

We construct a new tree 𝑇𝑖
′ from trees 𝑇 and 𝑇𝑖 rooted at 𝑣𝑖 by identifying the root 𝑣𝑖 

with a vertex 𝑣 ∈ 𝐿1
𝑚, 

 

Theorem 3.2. Let 𝑇1
′ and 𝑇2

′ are obtained from tree 𝑇 by identifying the root 𝑣𝑖 of 𝑇𝑖 with 

𝑢′ ∈ 𝐿1
𝑚 and 𝑣′ ∈ 𝐿1

𝑚̅̅ ̅̅ , respectively. Then 𝑆𝑂(𝑇1
′) ≥  𝑆𝑂(𝑇2

′). 

 

Proof. We suppose that 𝑢 and 𝑣 are adjacent to 𝑢′ and 𝑣′, respectively. Using Theorem 3.1, 

𝑑(𝑢) ≤  𝑑(𝑣). Therefore, we have 

𝑆𝑂(𝑇1
′) − 𝑆𝑂(𝑇2

′) = √(𝑑(𝑣𝑖) + 1)2 + 𝑑(𝑢)2 + √𝑑(𝑢)2 + 1 

                                     − (√(𝑑(𝑣𝑖) + 1)2 + 𝑑(𝑣)2 + √𝑑(𝑣)2 + 1) 

                                                          = (√(𝑑(𝑣𝑖) + 1)2 + 𝑑(𝑢)2 − √(𝑑(𝑣𝑖) + 1)2 + 𝑑(𝑣)2) 

              + (√𝑑(𝑣)2 + 1 − √𝑑(𝑢)2 + 1) 

         = 𝑓(1) − 𝑓(𝑑(𝑣𝑖) + 1) > 0, 

Therefore, 𝑆𝑂(𝑇1
′) ≥  𝑆𝑂(𝑇2

′),                                                                                                ■ 

 

We use a similar technique in [10], for constructing tree 𝑇 with a fixed degree 

sequence 𝐷 such that 𝑇 is the maximum optimal tree among the trees with degree sequence 

𝐷. We propose the following algorithms to construct such trees. 

 

Algorithm 1. (Construction of subtrees) 

1. Given the degree sequence of the non-leaf vertices as 𝐷 = (𝑑1 . 𝑑2. … . 𝑑𝑚) in 

descending order. 

2. If 𝑑𝑚 ≥ 𝑚 − 1, then using Theorem 3.1, the vertices with degrees 𝑑1 . 𝑑2. … . 𝑑𝑚−1 are 

in 𝐿1. Tree 𝑇 produces by rooted at 𝑢 with 𝑑𝑚 children whose their degrees are 

𝑑1 . 𝑑2. … . 𝑑𝑚−1 and 𝑑𝑚 − 𝑚 + 1 leaves adjacent to 𝑢. 

3. If 𝑑𝑚 ≤ 𝑚 −  2, then we produce subtree 𝑇1 by rooted at 𝑢1 with 𝑑𝑚 − 1 children with 

degrees 𝑑1 . 𝑑2 . , , , . 𝑑𝑑𝑚−1 such that 𝑢1 ∈  𝐿2 and the children of 𝑢1 are in 𝐿1. Subtree 

𝑇2 is constructed by rooted at 𝑢2 with 𝑑𝑚−1 − 1 children whose degrees are 

𝑑𝑑𝑚
. 𝑑𝑑𝑚+1. … . 𝑑(𝑑𝑚−1)+(𝑑𝑚−1−1). Then do the same to get subtrees 𝑇3 . 𝑇4 . … until 𝑇𝑘 

satisfies the condition of step (2). In this case, we have 𝑑(𝑣𝑘) = 𝑑𝑚−𝑘+1,  

 

Algorithm 2. (Merge of subtrees) 
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1. Set 𝑇 = 𝑇𝑖 and 𝑖 = 𝑘. We produce a new tree 𝑇𝑖−1
′  from 𝑇 and 𝑇𝑖−1 rooted at 𝑣𝑖−1 by 

identifying the root 𝑣𝑖−1 with a vertex 𝑣 ∈ 𝐿1
𝑚. Using Theorem 3.2, tree 𝑇𝑖−1

′  is a 

maximum optimal tree among trees with the same degree sequence. 

2. Consider 𝑖 = 𝑘 − 1. 𝑘 − 2. , , , .1 and 𝑇 = 𝑇𝑖. Tree 𝑇𝑖−1
′  from 𝑇 and 𝑇𝑖−1 by the same 

method of step (1). We construct trees 𝑇𝑘−2
′ . 𝑇𝑘−3

′ . … . 𝑇1
′. 

3. 𝑇 =  𝑇1
′ is the maximum optimal tree with given degree sequence 𝐷 = (𝑑1. 𝑑2. , , , . 𝑑𝑚). 

 

Example 3.3. In this example, we propose a maximum optimal tree with given degree 

sequence 𝐷 = (5. 5. 5. 4. 3. 3. 2. 2). Using Step 3 of Algorithm 1, we have subset 𝑇1 with 1 

child whose has degree 5. For the new degree sequence 𝐷1 = (5. 5. 4. 3. 3. 2), we construct 

tree 𝑇2 and have a new degree sequence 𝐷2 = (5. 4. 3. 3), Figure 1. It is easily seen that 𝐷2 

satisfies the condition of Step 2. 

Using Algorithm 2, we attach subtrees 𝑇2 to 𝑇3 for constructing 𝑇2
′, Figure 2, and 𝑇1 

to 𝑇2
′ for constructing the maximum optimal tree 𝑇1

′ = 𝑇, Figure 3. 

 

 
 

Figure 1: Construction of subtrees using Algorithm 1. 

 

 

 

Figure 2: Merge of subtrees using Algorithm 2. 
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4.  EXTREMAL TREES WITH THE MINIMUM SOMBOR INDEX 

In this section, we characterize the extremal trees with the minimum Sombor index among 

the trees with given degree sequence. To do it, we state the following theorem and some 

properties of a minimal optimal tree. 

 

Theorem 4.1. Let 𝑇 be a minimum optimal tree with a path 𝑣1𝑣2 … 𝑣𝑘 in 𝑇, where 𝑘 ≥ 4 

and 𝑑(𝑣1) < 𝑑(𝑣𝑘). Then 𝑑(𝑣2) ≤ 𝑑(𝑣𝑘−1). 

 

 

Figure 3: A maximum optimal tree 𝑇 with degree sequence ( 5. 5. 5. 4. 3. 3. 2. 2). 

 

Proof. Let 𝑇 be a minimum optimal tree with the degree sequence 𝐷. We suppose for 

contradiction that (𝑣2) > 𝑑(𝑣𝑘−1). We consider a new tree 𝑇′ obtained from 𝑇 by changing 

edges 𝑣1𝑣2 and 𝑣𝑘−1𝑣𝑘 to edges 𝑣1𝑣𝑘−1 and 𝑣2𝑣𝑘, respectively, such that no other edges are 

changed. In such a case, the degree sequence of 𝑇′ is the same as 𝑇. Using Lemma 2.2 and 

since 𝑑(𝑣1) < 𝑑(𝑣𝑘), we have 

𝑆𝑂(𝑇′) − 𝑆𝑂(𝑇) = √𝑑(𝑣1)2 + 𝑑(𝑣𝑘−1)2 + √𝑑(𝑣2)2 + 𝑑(𝑣𝑘)2 

                                    − (√𝑑(𝑣1)2 + 𝑑(𝑣2)2 + √𝑑(𝑣𝑘−1)2 + 𝑑(𝑣𝑘)2) 

                                    = (√𝑑(𝑣2)2 + 𝑑(𝑣𝑘)2 − √𝑑(𝑣𝑘−1)2 + 𝑑(𝑣𝑘)2) 

                                   − (√𝑑(𝑣1)2 + 𝑑(𝑣2)2 − √𝑑(𝑣1)2 + 𝑑(𝑣𝑘−1)2) 

  = 𝑓(𝑑(𝑣𝑘)) − 𝑓(𝑑(𝑣1)) < 0. 

 

which is a construction with the minimum optimality 𝑇.                                                       ■ 

 

By Theorem 4.1, we can conclude the following results for an optimal tree with the 

minimum Sombor index. The proof technique is similar to the results in [9]. 
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Corollary 4.2. Let 𝑇 be a minimum optimal tree among the trees with given degree sequence. 

Then there is no path 𝑣1 𝑣2 , , , 𝑣𝑘 in the tree 𝑇, where 𝑘 ≥ 3, such that d(𝑣1). 𝑑(𝑣𝑘) > 𝑑(𝑣𝑖) 

for 2 ≤  𝑖 ≤ 𝑘 − 1. 

 

Corollary 4.3. Let 𝑇 be a minimum optimal tree among the trees with given degree sequence. 

Then there are no two non-adjacent edges 𝑣1𝑣2 and 𝑢1𝑢2 in the tree 𝑇 such that 𝑑(𝑣1) <

𝑑(𝑢1) ≤ 𝑑(𝑢2) < 𝑑(𝑣2), 

 

Wang [10] presented the extremal trees by the greedy algorithm. We show that trees 

obtained by this algorithm are optimal trees with the minimum Sombor index. 

 

Algorithm 3. (Greedy algorithm for constructing a minimum optimal tree) 

1. Given the degree sequence of the non-leaf vertices as 𝐷 = ( 𝑑1. 𝑑2. , , , . 𝑑𝑚) in 

descending order. 

2. Label the root vertex with degree 𝑑1 as 𝑣. 

3. Label the children of 𝑣 as 𝑣1. 𝑣2. , , , . 𝑣𝑑1
 whose degrees are 𝑑2 . 𝑑3 . , , , . 𝑑𝑑1+1, 

respectively. 

4. Label the children of 𝑣1 (except 𝑣) as 𝑣11. 𝑣12 . , , , . 𝑣1 𝑑2−1
whose degrees are 

𝑑𝑑1+2. 𝑑𝑑1+3 . , , , . 𝑑𝑑1+𝑑2
, respectively. Do the same for the vertices 𝑣2. 𝑣3. , , , . 𝑣𝑑1

, 

respectively. 

5. Repeat (4) for all the newly labeled vertices, and always start with the neighbors of the 

labeled vertex with the largest degree whose neighbors are not labeled yet. 

 

Theorem 4.4. Let 𝑇 be a tree constructed by Algorithm 3 with a given degree sequence. Then 

𝑇 is a minimum optimal tree. 

 

Proof. Let 𝑇 be a tree constructed by Algorithm 3. It is easy to see that tree 𝑇 satisfies the 

conditions in Theorem 4.1. We show that the Sombor index of the tree 𝑇 attains the minimum 

among trees whose conditions in Theorem 4.1 hold. Two following conditions hold for the 

tree 𝑇. 

(1) Using Corollary 4.2, for any path 𝑣1𝑣2 , , , 𝑣𝑘 , 𝑘 ≥ 3, in 𝑇, 𝑑(𝑣1). 𝑑(𝑣𝑘) ≤  𝑑(𝑣𝑖) for 

2 ≤ 𝑖 ≤  𝑘 − 1, and 

(2) when 𝑑(𝑢) ≥ 𝑑(𝑣) ≥ 𝑑(𝑧) and 𝑢 is not adjacent to 𝑣, then using Corollary 4.3 𝑢 is not 

adjacent to 𝑧. 

 

The above properties show that tree 𝑇 has the minimum Sombor index. Therefore, 

the tree constructed by Algorithm 3 is a minimum optimal tree.                                                          ■ 
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Example 4.5. In this example, we propose a minimum optimal tree with given degree 

sequence 𝐷 = (5. 5. 4. 4. 4. 3. 3. 3. 2. 2). Using Algorithm 3, we consider the root with degree 

5 and children with degrees 5. 4. 4. 4. 3. The first child from the left will have children of 

degrees 3. 3. 2. 2 (see Figure 4). 

 

 
Figure 4: A minimum optimal tree 𝑇 with degree sequence ( 5. 5. 4. 4. 4. 3. 3. 3. 2. 2). 
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