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1. INTRODUCTION

Let G be a simple, connected (molecular) graph with the vertex set V(G) =
{v1,v2, ..., v} The distance d;; is the number of edges of shortest path between vertices v;
and v; in G. If G is a connected (molecular) graph then the minimum and maximum degree
will be represented by & and A, respectively. In this paper, some new bounds for molecular
graphs are obtained by investigating Kirchhoff matrix, Kirchhoff index and Kirchhoff
energy.

The resistance distance r;; is described as between the v; and v; peaks at G. This
distance is the resistor between the two related nodes of electronic nets; it is found by the
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principle of resistor electrical nets through Ohm and Kirchhoff laws. The Kirchhoff index
is defined by the resistance distance matrix [3, 6] as Kf (G) = X< 7i;.

The Kirchhoff index is used in many areas of chemistry. Some of those are
molecular graphs of polycyclic structures, circulation graphs, distance-order graphs and
Mobius stairs. The Kirchhoff's index brought a topological approach to the chain structure
of molecule. With this index, it was shown that the macromolecule was related to the
topological radius, mean square rotation radius and intrinsic viscosity. This contributed to
the study of highly complex and branched polymers. The Kirchhoff index in its approaches
has proved to be particularly helpful for examining the topological radius Ry, of these
molecules, where R;,, = Kf /n* and n is the number of atoms (non — hydrogen) in the
polymer.

One of the aims of this paper is to give some bounds through structure exponents as
vertices (number of atoms), edges (bonds), maximum peak degree (valence) for Kirchhoff
index. In addition, specific connections for molecules will obtain by giving some
definitions and limits about degree Kirchhoff index. The boundaries of an identifier are
significant reports about a molecule (or its graph) when they determine the approximate
area of an identifier associated with molecular constructional parameters. The second plan
of this essay is to find important connections for Kirchhoff energy by the help of
eigenvalues of Kirchhoff matrix. If Kirchhoff's energy is defined as the energy of the
ability to build this system, it is determined by the eigenvalues of the Kirchhoff
matriX. This energy can change the location, shape and content of the molecule.

The scheme of this paper is in the following: In Sections 1 and 2, some known
statements and bounds are given. In the sequel, some results are obtained for the Kirchhoff
energy using its eigenvalues. Indeed, the Kirchhoff index and the degree Kirchhoff index of
graphs are observed as some parameters and some inequalities are formed by the help of
defining relations.

2. PRELIMINARIES

Let K = K(G) denote the square matrix of order n and let also k;; denote (i, j)-entry. This
symmetrical and zero-square matrix is called the Kirchhoff matrix [1]. Let p; = p, = -+ >
pn be the eigenvalues of K(G). These numbers are generally called Kirchhoff eigenvalues
of G. The resistance distance can also be provided with the aid of eigenvalues and
eigenvectors of the integrated and networked Laplacian matrix. Let Kirchhoff Laplacian
matrix of a graph G be KL(G) = KD(G) — KA(G), where KD (G) is the Kirchhoff diagonal
matrix and KA(G) is the Kirchhoff adjacency matrix of a graph G [2,18,26]. The
Kirchhoff Laplacian eigenvalues are pf > ps >-->pk_ |, = pLk=0. As in [26], t =

t(G) = % nt pkis spanning tree and ¥, pf = 2m.
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The  normalized Laplacian  matrices of G are identified as
NL(G) = D(G)_TIL(G)D(G)% [4, 8]. Using this, the normalized Kirchhoff Laplacian matrix
of G is indicated by KNL(G) = (KD)_TlKL(KD); The eigenvalues of KNL(G) are shown
by po, p1, ) Pn—1, Where py = pi = -+ = pp_5 = pp 4 = 0. Also, ¢ = %H?;oz pi in [5].

A Laplacian-energy-like invariant is described as LEL = LEL(G) = Y1 (pF)Y/?
in [19] ,see [14, 20, 24] for more details. The Kirchhoff index of a graph G can be defined
by means of eigenvalues as Kf(G) = n Y=} ,,_liL' where n > 2. This equality is proved in
[12,13], see also [3, 6,19, 22,23]. The degree Kirchhoff index of G is explained as a new
index Kf'(G) = 2m Y2 pil{in [10] and [17].

The following results are important to verify the main results:

Lemma 2.1. [26] Let G be a graph of order n and G its complement. If Spec(G) =
{pk,pk, ..., pL_,,0}, then Spec(G) ={ n—pkn—pk...,n—pL_,,0}. Then, pt <n if

and only if G is disconnected.

Lemma 2.2. [21] Let G be a connected graph with n. Then pl = pt = ... = pL__ if and
only if G = K,,.

Lemma 2.3. [11] If a4, @3, ..., ag are all positive numbers then

1 1 2
sEZy i — (T @3] < s 28y @ = (B8, V) (1)
Lemma 2.4. [27] If ay, ay,..., a5 = 0, p1,p2,...,ps = 0and Y7-; p; = 1 then
1
. 1 =
Z?:l piai - ?:1 alpl 2 5/1 <;Zf=1 ai - f:l af)! (2)
where A = min(py,p,, ..., ps). Furthermore, equality in (2) holds if and only if a; = a, =

e — aS'
The notationsK,, P, K1 -1, Kpq, (p + g = n) show the complete, path, star, and
complete bipartite graph on n vertices, respectively.

3. MAIN RESULTS
3.1 KIRCHHOFF ENERGY

Due to the apparent performance of the graph energy idea and the fast spread of
mathematical theories in this concept, the energies built on the eigenvalues of the graph
matrices are given one by one. The Kirchhoff energy is one of these. In this subsection, the
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Kirchhoff energy is investigated by the help of its eigenvalues with organic compounds;
degrees, edges and nodes. The Kirchhoff energy KE(G) is represented by KE = KE(G) =
™ 1 |pi| in this paper, see [15, 16].
As shown in [1], ¥y p; = 0 and X7y (p:)* = 2 Xi<icjen (kij)? where k;; is the
(i, ))-th entry of the Kirchhoff matrix for 1 <i < j < n. To simplify our argument, the
symbol Y1<;<j<n is denoted by 3.
In [1] the following upper bounds for KE (G) are established

KE@G) <23 (ky)? [0 - DI2E (k)? - CX () ()
Also, the following lower bound for KE(G) is given in [1];

KE@G) 2 J25 (ky)? +n(n — (V)% ©)

where V is the absolute value of the determinant of Kirchhoff matrix.

Corollary 3.1. Let G be a connected graph with the maximum degree 4, then
[2n X (kij)?
KE < A+ -"——. (6)

Equality holds ifand only if G = K, or G = K ,,.

Inequalities (6) and (3) are not comparable. Thus, if G = K, or ¢ =K, , the
inequality (6) is stronger than (3). Since Laplacian spectrum of K, is (0,n,...,n), then
KE(G)=2(n-1). Also, 2% (k;)*=m—-1)?+(—-1). For example n=
10, KE(G) = 30 in Equation (3) and KE(G) = 24 in Equation (6).

Corollary 3.2. Let G be a connected graph with n > 2 vertices, then

/ZHZ(kij)z
KE<(n—1)++———. (7)

2
Equality holds ifand only if G = K, and ¢ = K, .

o [nZ G2 22 k2
2mn-2m J (n—1)+ —], (7) is better than (2).

Remark 3.3. Since + =
na 2 2

Theorem 3.4. Let G be a connected graph then

2y (ki]’)2+n52

KE < 2200 8)

Equality holds ifand only if G = K, and G = K, ,.

Proof. Since (|p;| —8)2 =0, X1, |pil> = 2%, |pil6 + X1, 6% = 0. It is resulted that

..)2 82
2% (ki;)? +né? = 26KE. Hence, KE < 22("%
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Inequalities (5) and (8) are incomparable. Hence, the inequality (8) is better than (4)
if and only if G = K,, or G = K, ,,. For example n = 5; KE(G) = 7,404 and KE(G) =
12,5 in (8). ]

Corollary 3.5. Let G be a connected graph, § = §(G) and 4 = A(G). Then
ZZ(kij)2+TlA6

Equality holds if and only if ¢ = K,.

Proof. Since \/p; > V& and VA > \/p; then (\/p; — V&) (VA — \/p;) = 0. Thus, \/p; (VA +
V8) = |pi| +VAS. Hence, X, |pil (VA +VE)? 2 X1y (p)? + 2VAS X, |pi| + nAs.
Therefore, KE[(VA + V8)? — 2vAS] = 2 Y. (k;;)? + nAS and the inequality is concluded

2y (kij)2+nAé‘

by KE > Y

Inequalities (9) and (5) are incomparable. Such as G = K,,, the inequality (9) is
better than (5).

Lemma 3.6. Let G be a connected graph with determinant V. Then

i=1 (L+1pi) = (1 + V)™, (10)
Equality holds if and only if G = K,,.

Proof. Let f(a) =log(1+e%). Since f(a) is convex on (—oo, 4+ 00), it has
i log(1+e“i)2nlog(1+exp(% *.a)). Replacing «a; by loglp;l (i=

1,2,...,m), it gets log [Ty (1+ o) = nlog(1 + (ITy IpD™). So, Ty (1 + [pil) =

(1 + (I, |pi|)%)". Hence, [T, (1 + |p:) = (1 + V%)". Inequality holds in (10) if and
only if all |p;|'s are equal. [

Theorem 3.7. Let G be a connected graph with the quantitiy V. If p; > 0fori =1,2,...,n
then

1
KE > nVn,
ifandonlyif G = K,,G = B, and G = K; ;4.

Proof. Arithmetic-Geometric Mean Inequality shows that
1+|pil KE
Ly (LD < G, 22 = (1 4+ 5

1 1
Asinthe Lemma 3.6, (1+ V)" <[k, A1+ |pi) <A+ %)”. Hence, KE = nV= if and
onlyifG=K,, G=P,andG =Ky ,,_4. [
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3.2 KIRCHHOFF INDEX AND THE DEGREE KIRCHHOFF INDEX

In this subsection, different bounds are reported for the Kirchhoff index consisting its
ordinary coefficients and the eigenvalues of Kirchhoff Laplacian matrix. The strategy of
this subsection is to study extensively on Kirchhoff index. After that, it is to give some
intimate relations for the degree Kirchhoff index of these graphs.

In [25], ¥7q (p'))* = n+ 2R_;(G), where R(G) is the general Randi¢ index. For

more information for R_,(G) see [5,9].

Theorem 3.8. Let G be a connected graph of order n > 3 and t spanning trees then

2
— (n—-2)
KfF(G) = 1+2C ”( e —— ) (11)

(nt(6))3m=2)(n-1  3(nt(G))n-1

with equality holding if and only if G = K,.

1, 1 3n—4 .
Proof. As in Lemma 2.4, aq; = o L= L2,...on=1 pr=g= p= sm—2)n-1) ©
2,3,...,n—1,itholds
3n—4
1 1 n-1__3n—-4 1 1 3(n?-3n+2)
3n—3p%+ =2 3(n2-3n+2) pt ( )3n *1li= ( )
1
1 1 11 —1 (1\r1
>-[—yn-1 - vl (=
=3\ n- i=1 pkE = (P%) )
Hence,
_3( 1)
1 i+ 3n—4 (Kf(G)_i)_ ()n Hn11
3n-3 P% 3(n2_3n+2) n P% ( )3(n§7—13;41+2) Pi
P1
1 Kf(G)  1rm-1 1 \—
= 3n-3 n 3=l pf)n "
from which
2
-2 1 2 (p1)3n=6 1
- 4 > -
3(n-2) p’f + 3n(n-2) Kf(G) - o4 L

(Tlt(G))3(n2_3n+2) 3(nt(G))n-1
This implies that
2
3n(n-2 y3s(m-2) 1
KF(G) = 7 +C >< e L) (12)
P1 (nt(G))3("2‘3"+2) 3(nt(G))n-1
By Lemma 2.1,i t can be demonstrated that

2
n 3n(n-2) x3n—6
f=2+—— 3n=%
(nt(G))S(n2—3n+2)

is a decreasing function for x < n. Thus,
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2
3n(n 2) n3n—6

f@) = fm) =2+

(nt(G))S(n2—3n+2)

Using this result, we obtain

2
(n-2)
Kf(G)>1+3n(n 2)( n3 32n_4 _ 1 1)

(nt(G))3(m*-3n+2) 3(nt(G))n-1
which completes the first part of the proof.
Assume that Equation (11) holds. Then all the above inequalities must be
equalities. Then according to Lemma 2.2, it must be pt =pl=--=pL_, and G =
K. Conversely, equality in (11) for G = K,, can be easily checked. [

Corollary 3.9. Let T be a tree of order n > 3 with the degree 4, then
3n—4
3n3(2‘2)(n—2) _n*-2n
2 2

Kf(G) =1+

Proof. Since T is tree, t = 1. m

Theorem 3.10. Let G be a connected graph of order n then

(13)
with equality holding if and only if G = K,.

Proof. It is known that 1 - ﬁ > 0. If the sum is applied to both sides of the equation, this

2

gets

Theorem 3.11. Let G be a connected graph with n > 2 vertices, then
K — S s S
f(G) - (LEL(G)Z (nt(G))ﬁ)
Equality provides ifand only if G = K, and G = K; ,_4.

Proof. Let n — 1 = a. Setting in (1),

1
lag 1 (al)
a—
[allpf llplL

1 1
[Z?zl (l—[a L) <a2?=1p_iL_( ?:1 p_lL>

lll

< (@)X, p_liL_ ( i=1 iL)

and so

This inequality transforms into
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le(G) gt l @ _[ga L
1] — [=
" (ne(6)@ " o Jp_%
e
1 a (n-2)
- < Kf(G).

LEL(G)Z (nt(G))%l n

Hence,
n-1

Kf(G) = (LEL(G)Z - (nt(G))ﬁ )
Equality provides ifand only if 6 = K, and G = K; ,_,.m
Corollary 3.12. Let T be a tree of order n > 2 then

KfF(6) 2 725 G — (0= D).
Proof. Foratree T, t = 1. ]

Theorem 3.13. Let G be a connected graph and n > 2 vertices. Then

, 2mn(n-1)
Kf'(G) = 2R 0 (14)
ifandonlyif G = K,,,G = K, ,and G = Ky ,,_4.
Proof. From the Chebyshev inequality (see [7]) for p; = o 4= (pD? by=p} i=
0,1,...,n— 2, itis obtained that
1 1 2 1 ’ -2 1 4
Yiso ; ,Zn ; I(pl)z ?=o2 p_l{(pi)z Z?:oz p_l{pi'
This inequality gets,
O (n+ 2R, (6)) = (n? ).
mn?-2mn
Hence, Kf (6) = MT(G)
Equality provides ifand only if 6 = K,,, G = K, , and G = K ;. ]
Theorem 3.14. Let G be a connected graph with n > 3 vertices. Then
n-2
Kf'(G) = @mn=i(n-1) (15)

1
(@)T

Equality provides ifand only if 6 = K,,, ¢ = K,y and G = Ky ,,_1.

Proof. Applying the Arithmetic-Geometric Mean Inequality,
NS oz (= DAL 1)n :
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then X&) 5 "1 ence the claim holds. -
2m @M@ty
A

Corollary 3.15. Let T be a tree of order n > 3 then
n-2 1
Kf'(G) = (2m)n-1(n — 1)An-1. (16)

Proof. Foratree T, t = 1.m

Corollary 3.16. Let G be a complete graph with m edges and n > 4 vertices. Then

, A -1 n+1
Kf'(6) =" (17)

Proof. Let n — 1 = a. From the eigenvalues of normalized Laplacian matrix for complete
graphs in [8]. Then Kf'(G) = 2m(a) % = n(a)?($)* and so

Vo 2@ _ AP @? )"
Kf'(6) = n(@?(D)* = — .
_ayn+1
Hence, Kf'(G) = An-DT [

2mnn-3
4, CONCLUSION

In this paper, we first express some known inequalities and descriptors and then continue
our study by observing the Kirchhoff matrix and its eigenvalues. In the sequel, some
connections for Kirchhoff energy in terms of the distances and eigenvalues are
obtained. Throughout the remainder of this paper, some information for the Kirchhoff and
degree Kirchhoff indices of graphs are found.
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