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1. INTRODUCTION‎ 

In 2010, Vukičević and Gašperov [9] constructed a broad class of molecular descriptors 

consisting of 148 discrete Adriatic descriptors to improve the QSPR/QSAR (Quantitative 

structure-property/activity relationship). They found that only the SDD index has the best 

correlation ability for predicting the total surface area of polychlorobiphenyls (PCB). 

Recently, Furtula, Das, and Gutman [5] analyzed the SDD index for the data of octane 
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isomers and compared it with other popular VDB indices, such as Zagreb indices, 

geometric-arithmetic index, atom-bond connectivity index, and inverse sum index. They 

concluded that the SDD index has the right to be considered a viable and applicable 

molecular descriptor. Recently, the authors of [13, 11] have given bounds for the SDD 

index using the edge/vertex-degree-based indices, including Zagreb indices. We refer to 

some recent articles for more details on the SDD index [1, 3, 4, 6, 7, 8, 12, 1416].  

In CGT, cycles exist in aromatic compounds which contain the Kekule structure. 

The corresponding graph representation involves the study of perfect matching as it plays 

an essential role in analyzing the resonance energy and stability of hydrocarbons. Such an 

application also propels our interest in studying the SDD index's behavior for the bicyclic 

graphs having a perfect matching. In this direction, we complement the study of [16] and 

present the first five lower bounds of the SDD index for all bicyclic graphs with perfect 

matching and the graphs that attain the bounds. Further, we also compute an upper bound 

of the SDD index for bicyclic graphs with a maximum degree of four, which admits a 

perfect matching. 

The organization of the paper is as follows. Section 2 describes the required notions 

and results from the literature. Section 3.1 presents the first five lower bounds of the SDD 

index for all bicyclic graphs with perfect matching. Finally, in Section 3.2, we compute the 

upper bound of bicyclic graphs that admit a perfect matching and have a maximum degree 

of at most four. 

 

2. PRELIMINARIES 

Throughout this paper, we consider only nontrivial connected simple graphs. A graph is 

denoted by    (   )  where   and   represent the vertex and edge sets of the graph, 

respectively. Let   ( )  *        + denote the neighbors of a vertex    , and 

  ( ) denotes the degree of a vertex    , then |  ( )|    ( ). Let   denote the 

maximum degree of the vertices in  . A vertex of degree one is called a pendant vertex, 

and a path               is called a pendant path if   (  )   ,   (  )   , for 

            and   (  )   . A graph   is called a bicyclic graph if it has exactly two 

cycles. If   is a bicyclic graph on  (  ) vertices and   edges, then      . A 

matching   of a graph   is a subset of edge set   such that no two edges are adjacent in  . 

If | |  | |    then matching   is called a perfect matching. Other definitions and 

notations are taken from the Book [10]. 

 Symmetric division degree index    ( ) is defined as  

                                             ( )  ∑ {
  
 ( )   

 ( )

  ( )  ( )
}        ( )                                             ( ) 

where   ( ) and   ( ) denote the degree of the end vertices of an edge     ( ) in the 

graph  . 
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 Suppose the degree of the vertex    ( ) is i and the vertex    ( ) is  , then 

the edge      is referred to as an (   )-edge, and the total number of (   )-edges are 

denoted by    . Let 

                                                       (   )   
     

  
                                                                ( ) 

then, from Equation (1), the SDD index for a graph   is written as  

 

                                         ( )  ∑        (   )                                                   ( ) 

Lemma 2.1. [16] If   has   pendants paths, then    ( )  
 

 
   | ( )|   

Lemma 2.2. [2] If   is a connected graph, then    * (   )+     * (   )+   where 

       *     + and equality holds only for         and       

Lemma 2.3.  (   )  
    

 
    , is a monotonic increasing function. 

Proof. Let  ( )  
    

 
 then   ( )    

 

  
     since      Hence  (   )  

    

 
 is an 

increasing function.                                                                                                                ■ 

 

REMARK 2.1. Note that the minimum value of  (   )  
     

  
  , and equality holds if 

and only if      

 

3. BOUNDS OF SDD INDEX FOR BICYCLIC GRAPHS WITH A PERFECT 

MATCHING 

 

Recall that widely in chemical graph theory, the computation of topological indices is on 

hydrogen-suppressed chemical structures and that the PCB compounds as a molecular 

graph are bicyclic. Additionally, the existence of perfect matchings in molecular graphs 

tells us about the aromaticity of the compound. In the rest of this article, we give bounds of 

SDD index for bicyclic graphs with a perfect matching. 

Before proving the results, we define some required notations and definitions. 

Let     denote the set of all bicyclic graphs which have a perfect matching on    

vertices. Next, we define three of its subsets which also form a partition of    . 

1. Let    
      denote the set of bicyclic graphs on    vertices such that if 

     
 , then the two cycles in   are joined by a path, as shown in Figure 1(a). 

2. Let    
      denote the set of bicyclic graphs on    vertices such that if 

     
  then the two cycles in   are joined by a common vertex, see Figure 

1(b). 
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3. Let    
      denote the set of bicyclic graphs such that for      

   the two 

cycles of   have a common path, as shown in Figure 1(c). 
 

 A representative for each of the graph classes defined above is shown in Figure 1. 

 
Figure 1: Bicyclic graph  

 

Note that any graph       belongs to precisely one of the three subsets    
      

   

or    
 , and hence        

      
     

 . 

 

3.1. LOWER BOUNDS OF SDD INDEX FOR BICYCLIC GRAPHS WITH A PERFECT 

MATCHING  

In this section, we compute the first five minimum values of the SDD index for all the 

bicyclic graphs that admit a perfect matching. To this end, we identify those graphs that 

possess the smallest SDD index value in each of the subclass     
      

   and    
 . 

 

3.1.1.     
   

Before proving the required bounds of     
   we define some special classes of bicyclic 

graphs in     
   which play a primary role in our proof. 

 Let   
 (  )      

       be a collection such that for any     
 (  ), the edge-

degree partition of   is given by   
 ( )  *                      +.  

 For     and        let   
 (  )      

  represent those graphs   with edge-

degree partitions   
 ( )  *               + and   

 ( )  *             

               +, respectively.  

 For     and          let   
 (  )      

  be defined by the edge-degree 

partitions   
 ( )  *                            +    

 ( )  *          

                  +, and   
 ( )  *                     + respectively. 

 Let   
 (  )      

       be defined such that for any     
 (  ), the edge-

degree partition of   is given by   
 ( )  *                            +. 
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 Finally, let us define   
 (  )      

  for     to be the collections of the bicyclic 

graphs  , whose edge-degree partition is given by   
 ( )  *             

                +. 

 A representative for each graph class defined above is shown in Figures 2(a) to 

2(h). 

 
 

Figure 2: Representation of graphs corresponding to edge-degree partition   
 ( )   

          of bicyclic graphs   
 (  )            respectively. 

 

THEOREM 3.1. Let      . 

1. If      
 , then    ( )     

 

 
 . Equality holds if and only if     

 (  )    

   

2. If      
  *  

 (  )+, then    ( )      . Equality holds if and only if 

    
 (  )       

3. If      
  *  

 (  )   
 (  )+, then    ( )     

  

 
. Equality holds if and only 

if     
 (  )       

4. If      
  *  

 (  )   
 (  )   

 (  )+  then    ( )     
  

 
. Equality holds if 

and only if     
 (  )        

 (  )       

5. If      
  *  

 (  )   
 (  )   

 (  )   
 (  )   

 (  )+, then    ( )   (   )  

Equality holds if and only if     
 (  )      or     

 (  )      or 

    
 (  )       
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Proof. We prove this lemma by taking conditions on the number of pendant paths   in 

the bicyclic graph      
 . 

 

CASE (1) If      then     and     
 (  )                 

 (  ) 

           Note that by direct computation,    ( )     
 

 
 if     

 (  ), 

and    ( )      , if     
 (  ). 

 

CASE (2) If      then        and we need to consider the following two 

subcases: (2.1) when the length of the pendant path is one and (2.2) when the length 

of the pendant path is at least two. 

SUBCASE (2.1) If the length of the pendant path is one, then by taking the 

condition on maximum degree  , we have: 

I. If     , then   has exactly three vertices          of degree three. 

Now, again analyzing the vertices         , since      
 , we see that 

  can have at most two adjacent pairs among them.  

(a) Suppose   has two pairs of adjacent vertices among           

then     
 (  ) with     and    ( )   (   ). 

(b) Suppose that at most one pair of vertices are adjacent among 

        , then   has at least six edges that connect the vertices 

having degrees two and three. Since the contribution of an edge 

uv is at least 2, we get          

     ( )    (   )   (   )   (   )     
  

 
  (   ). 

II.         , then   has at least two edges connecting the vertices of 

degree two and  . Then    

    ( )    (   )   (   )   (   )     
  

 
  (   ). 

SUBCASE (2.2) If the length of the pendant path is at least two, then we again 

make conditions on the maximum degree    

(I) Let     , then   has exactly three vertices          of degree 

three. Again we observe that   can have at most two pairs of 

adjacent vertices among         , since      
 .  

(a) Suppose two pairs of vertices among           are adjacent, 

then     
 (  ) with     and    ( )     

  

 
. 

(b) Suppose one pair of the vertices among           are 

adjacent, then     
 (  ) with     and    ( )     

  

 
. 

(c) Suppose that no pair of vertices         , are adjacent, then 

    
 (  ) with     and    ( )   (   ). 
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(II) Let     , then   has at least three edges connecting the vertices of 

degree two and  . In this subcase, we have     ( )    (   )  

 (   )    (   )   (    )     
  

 
  (   ). 

 

CASE (3) If      , then      . Now, we need to consider two subcases. 

SUBCASE (3.1) If   has at least one pendant path of length one, then from 

Lemma 2.3, we have  

         ( )   (   )   (   )    (   )   (    )     
  

 
  (   ). 

SUBCASE (3.2) If both the pendant paths have lengths at least two, then  

(I) If     , then   has four vertices             of degree three. Now, 

we analyze the position of these vertices             in  . Since 

     
   cycles are joined by a path, so among the vertices        

     , at most four pair of vertices are adjacent. 

(a) Suppose   has four pairs of adjacent vertices among 

               , then   will have exactly four edges that connect 

the vertices of degrees two and three. Hence     
 (  ) with     

and    ( )     
  

 
. 

(b) Suppose   has three pairs of adjacent vertices from 

                , then   will have exactly six edges that connect 

the vertices of degrees two and three. In that case,     
 (  ) with 

    and    ( )   (   )  

(c) Suppose that   has at most two pairs of adjacent vertices among 

             then   has at least eight edges that connect the 

vertices of degrees two and three. Then,    ( )    (   )  

  (   )   (    )     
  

 
  (   ) 

(II) If       then   has at least two edges that connect the vertices of 

degrees two and  . Then,    ( )    (   )    (   )    (   )  

 (    )    (   )    (   )    (   )   (    )     
  

 
 

 (   ). 

 

CASE (4) If      then      , and we need to consider the following two 

subcases: (4.1) when at least one pendant path has length one, and (4.2) all three 

pendant paths have length at least two.  

SUBCASE (4.1) If   has at least one pendant path of length one, then from 

Remark 2.1 and Lemma 2.3, we have  

   ( )   (   )    (   )   (   )     
  

 
  (   ). 
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SUBCASE (4.2) If all the three pendant paths in   have lengths at least two, then 

we have the following cases based on the maximum degree     

(i) If     , then   has five vertices                of degree three. 

Since      
   is a bicyclic graph in which cycles are joined by a path, 

  has at most five pairs of adjacent vertices among               . 

Then   has at least five edges that connect the vertices of degrees two 

and three. Since   has three pendant paths, then  

        ( )    (   )    (   )   (    )     
  

 
  (   ). 

(ii) If     , then   has at least one edge which connects the vertices of 

degrees two and  , then  

   ( )    (   )   (   )    (   )   (    ) 

                         (   )   (   )    (   )   (    ) 

                                          
  

 
  (   ). 

 

CASE (5) If      then from Lemma 2.1 

     ( )  
 

 
   | ( )|   

 

 
    (    )   (   )                      

Hence the result.                                                                                                                ■ 

3.1.2      
   

 

Before proving the required bounds of    
 , first, we identify a bicyclic graph in    

 
 which 

is required for our proof. Let    
     

  be a collection of bicyclic graphs on    vertices, 

such that if      
 , then   has an edge-degree partition  ( )  *               +, 

   , see Figure 1(b). 

 

Theorem 3.2. If      
 , then    ( )   (   ). Equality holds if and only if    

   
        

Proof. The proof follows by case analysis similar to Theorem 3.1. For brevity, we omit the 

proof here.                                                                                                                               ■ 

 

3.1.3      
   

 

Before proving the required bounds of    
   first, we identify and define some special 

classes of bicyclic graphs in    
   which are required for our proof. 

Let   
 (  )     

          
 (  )    

 (  )     
          

 (  )     
      ; 

  
 (  ),   

 (  )     
          

 (  )     
      ;   

 (  )     
      ;   

 (  )  

   
      ;    

 (  )     
      ;    

 (  )     
      , and    

 (  )     
       be 
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the collection of bicyclic graphs which has a perfect matching such that if     
 (  )    

          then it has the following edge-degree partitions.  
 

                                 
 ( )  *                      +  

                                 
 ( )  *               +  

  
 ( )  *                            +  

  
 ( )  *                            +  

  
 ( )  *                            +  

  
 ( )  *                            +  

  
 ( )  *                            +  

  
 ( )  *                            +  

                                
 ( )  *                     +  

                                
 ( )  *                            +  

   
 ( )  *                             +  

   
 ( )  *                             +  

respectively, see Figure 3 for a graph representing each of these classes.  

 

 
 

Figure 3: Representation of graphs corresponding to edge-degree partition   
 ( )  of  

                      bicyclic graphs in   
 (  )              respectively. 
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THEOREM 3.3.      

1. If      
   then    ( )     

 

 
. Equality holds if and only if     

 (  )    

   

2. If      
  *  

 (  )+  then    ( )        Equality holds if and only if 

    
 (  ) or     

 (  )     or     
 (  )      

3. If      
  *  

 (  )+   1,2,3,4, then    ( )     
  

 
  Equality holds if and 

only if     
 (  ) or     

 (  )      

4. If      
  *  

 (  )+   1, ,6, then    ( )     
  

 
  Equality holds if and 

only if     
 (  )     or     

 (  )      

5. If      
  *  

 (  )+   1, ,8, then    ( )   (   )  Equality holds if and 

only if      
 (  )      or     

 (  ) or      
 (  ),     or   

   
 (  ),    . 

 

Proof. The proof is obtained by making cases on the number and length of the pendant 

paths, similar to Theorem 3.1. For brevity, we omit the proof here.                                      ■ 

 

Now, combining the above three theorems, we are ready with the first five 

minimum values for the SDD index of all bicyclic graphs, which have a perfect matching. 

 

Theorem 3.4. Let       be a bicyclic graph that has a perfect matching. 

1.  The minimum value of    ( ) is    
 

 
, and equality holds if and only if 

    
 (  )            

 (  )        

2. The second-minimum value for    ( ) is     , and equality holds if and only if 

    
 (  )        

 (  )             
 (  )         

 (  )       

3. The third-minimum value of    ( ) is    
  

 
, and equality holds if and only if 

    
 (  )         

 (  )          
 (  )     . 

4. The fourth-minimum value of    ( ) is    
  

 
, and equality holds if and only if 

    
 (  )                

 (  ), for      or     
 (  ) or     

 (  )   

    

5. The fifth-minimum value of    ( ) is  (   ), and equality holds if and only if 

     
       or   

 (  ) or      
 (  )      or     

 (  ) or     
 (  ) 

or      
 (  ),     or     

 (  ) or      
 (  )        

  

Proof. The theorem follows directly from Theorems 3.1, 3.2, and 3.3.                                 ■ 
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3.2. UPPER BOUNDS OF SDD INDEX FOR BICYCLIC GRAPHS WITH A PERFECT 

MATCHING AND MAXIMUM DEGREE AT MOST 4  

In this section, we compute the upper bounds of the SDD index for bicyclic graphs, which 

has maximum degree four and that admits a perfect matching. Before proving the results, 

we identify and define some interesting classes of graphs that play a crucial role in the 

computation of upper bounds.  

Let   
 (  )     

     
 (  )     

 ,         be the set of bicyclic graphs such 

that, if     
 (  )      or     

 (  )        then depending on   being even or 

odd, we have two sets of edge-degree partition of  . When n is even, then the edge-degree 

partition is given by      

 ( )  *    
   

 
     

   

 
     

   

 
     

   

 
+   

See Figure 4(a) and Figure 4(c). When n is odd, the edge-degree partition is  

 ( )  *    
   

 
           

   

 
     

   

 
           

   

 
+, 

see Figure 4(b) and Figure 4(d). 

 If     
 (  )      or     

 (  )       then the edge-degree partition of   is  

 ( )  *                                 +, 

see Figure 5(a) and Figure 5(c). 

 For     
 (  )      or     

 (  )       then the edge-degree partition of 

bicyclic graph   is 

 ( )  *                           +, 

see Figure 5(b) and Figure 5(d). 

 
Figure 4: Representation of bicyclic graphs which attains maximum SDD index. 
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Figure 5: Representation of graphs corresponding to the edge-degree partition  ( ) of 

bicyclic graphs   
 (  )   

 (  )   
 (  )   

 (  ), respectively. 

 

Theorem 3.5. Let       for    , and   has a maximum degree at most four, then 

                                                 ( )  {

 

 
(      )           

 

 
(      )             

 

Equality holds if and only if     
 (  )      or     

 (  )       

 

Proof. Let 

                                    ( )  {

 

 
(      )           

 

 
(      )             

                                    ( ) 

We prove this theorem by considering two cases depending on the number of pendant 

vertices in      : (1)   has exactly n pendant vertices and (2)   has at most     

pendant vertices. 

 

CASE (1) When   has n pendant vertices, then each non-pendant vertex of   is 

adjacent to a vertex of degree one, and that, in this case, either      
  or      

  

and      
  as the graphs under study have a maximum degree of at most four. 

We consider two subcases: (1.1) If      
  or (1.2) If      

 . 

SUBCASE (1.1) Suppose      
 . We prove this case by the method of 

induction.  

I. When    , then      (as shown in Figure 6(a)) and    (  )  
       ( )  

II. When    , then      (as shown in Figure 6(b)) or      (Figure 

6(c)) or      (Figure 6(d)) and    (  )         ( )        
   (  )        ( ) and    (  )         ( )  

III. For                is one of the graphs    
     

     
   which have 

edge-degree partitions as given in Table 1, Table 2, and Table 3, 

respectively. 
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Figure 6: Bicyclic graphs discussed in Subcase 1.1 and have either 12 or 14 vertices. 

 

(a) If      
 , then from Table 1,    ( )   ( )         

 

Table 1: Edge-degree partition for graphs in    
 . 

Classes                                     

I 0 6 2 0 0 3 6 0 47 

II 0 6 2 0 0 4 4 1 46.83 

III 1 4 3 0 1 1 6 1 47.58 

IV 1 4 3 0 1 2 4 2 47.41 

 

(b) If      
 , then from Table 2,    ( )   ( )        and the equality 

is attained by graphs in the class (XIII) from Table 2, whose edge-degree 

partition represents   
 (  ) that is, equality holds if     

 (  ). 
 

(c) Table 2: Edge-degree partition for graphs in    
 . 

Classes                                     

I 0 7 2 0 0 4 6 0 52.33 

II 0 7 2 0 0 5 4 1 52.166 

III 1 5 3 0 1 2 6 1 52.91 

IV 1 5 3 0 1 3 4 2 52.75 

V 1 5 3 0 1 1 8 0 53.08 

VI 1 5 3 1 0 2 5 2 52.5 

VII 1 5 3 1 0 1 7 1 52.66 

VIII 2 3 4 0 2 1 4 3 53.33 

IX 2 3 4 0 2 1 5 2 53.41 

X 2 3 4 0 2 0 6 2 53.5 

XI 2 3 4 0 2 2 2 4 53.166 

XII 2 3 4 1 1 0 5 3 53.08 

XIII 3 1 5 0 3 0 2 5 53.75 
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(d) If      
 , then from Table 3,    ( )   (  )      , and equality is 

attained by graphs in the class (X) from Table 3, whose edge-degree 

partition represents   
 (  )  that is, equality holds if     

 (  ). 

Thus the results hold for       . 

 

Table 3: Edge-degree partition for graphs in    
 . 

Classes                                     

I 0 8 2 0 0 5 6 0 57.66 

II 0 8 2 0 0 6 4 1 57.5 

III 1 6 3 0 1 2 8 0 58.41 

IV 2 4 4 0 2 2 4 3 58.66 

V 2 4 4 0 2 1 6 2 58.833 

VI 1 6 3 0 1 3 6 1 58.25 

VII 3 2 5 0 3 1 2 5 59.083 

VIII 3 2 5 0 3 0 4 4 59.25 

IX 1 6 3 0 1 4 4 2 58.08 

X 4 0 6 0 4 0 0 7 59.5 

XI 3 2 5 1 2 0 3 5 58.833 

XII 2 4 4 2 0 0 6 3 58.166 

XIII 1 6 3 1 0 3 5 2 57.833 

XIV 2 4 4 1 1 1 5 3 58.41 

XV 2 4 4 1 1 2 3 4 58.25 

XVI 3 2 5 0 3 0 4 1 53.25 

XVII 2 4 4 2 0 1 4 4 58 

XVIII 2 4 4 1 1 0 7 2 58.58 

XIX 1 6 3 1 0 2 7 1 58 

XX 2 4 4 0 2 0 8 1 59 

XXI 2 4 4 0 2 3 2 4 58.5 

XXII 1 6 3 1 0 1 9 0 58.166 

 

IV. For     , we prove the theorem by induction by assuming that the 

result holds for      
 , for       , where each non-pendant 

vertex of   has a pendant-neighbor. 

 

Let   be the perfect matching of      
  and let each non-pendant vertex of    

have a pendant-neighbor. Suppose         are the pendant vertices adjacent to the 

vertices          respectively, where   (  )          . Then *         
 +   . 

 

We complete the proof of this case by considering two subcases. 
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SUBCASE (1.1)(IV).1: If   has at least one vertex   *       + such that 

  ( )   . 

 

Without loss of generality, let     . Let    be its neighboring pendant vertex, 

where *    +   . In this subcase, suppose   (   ) is the other neighbor of 

    , then   (  )   . 

(A)  Suppose   (  )    with   (  )  *        +, where   (  )                                                            
If   has no vertex of degree four, then   will not be a bicyclic graph as each 

non-pendant vertex of   has a pendant neighbor, so we get a contradiction. 

Hence, there exists a vertex           of degree four in  , such that 

          are vertices of degree three in  . Let      *      + 
*                       + and      *                    +. Note 

that      (   )
  and    is a perfect matching of   ; see Figure 7. By 

induction hypothesis, we have 

   ( )     (  )    (   )  (   ) (   )   (   )   (   )   (   ) 

                                 (   )  
 

  
(     )                                

(a) If     is even, then from Equation 4, we have   

                           ( )  
 

 
*  (   )    +  

 

  
(     ) 

                                         ( )  
 

  
(    )   ( ) 

 

(b) If     is odd, then from Equation 4, we have   

    ( )  
 

 
*  (   )    +  

 

  
(     ) 

      ( )  
 

  
(    )   ( ). 

 

 
Figure 7: Illustration of induction in Case (A). 

 

(B) When   (  )     and let us denote the neighbors as   (  )  
*           +, where   (  )   ,   (  )   (  )     Since       
either   , or    has degree greater than or equal to three. Without loss of 

generality, let   (  )     Now, we need to take conditions on   (  ), and 

  (  ). 
(a) Suppose   (  )    and   (  )   . Let   (  )  *     + and let 

*        + be the three neighbors of   , such that   (  )   . Note 

that, if   has no vertex of degree four other than *  +, then   can not be 

a bicyclic graph. Hence there exist a vertex of degree four in  , say      

where     is the least. That is, either    is degree 4 or the vertices 

         are having degree three. 



160                                                                                                                  RAJPOOT AND SELVAGANESH 

 

Let       *      + *                       + and let 

     *                    +. Note that      (     )
  and    is 

a perfect matching of   ; see Figure 8. Hence, by induction hypothesis, 

we have 

I. When      we have 

                                          ( )     (  )   (   )   (   )   (   )   (   )   (   )   (   ) 

         (   )  
  

 
  ( ). 

 

II. For      we have 

                                             ( )     (  )   (   )   (   )   (   )   (   ) 

               (   ) (   )  (   ) (   )   (   )   (   )   (   )                                    

                 (     )  
 

  
(      )                                     

               ( )  
 

  
(      ) (From Equation 4) 

                                               ( )                                                                          
 

 
Figure 8: Illustration for the Case (B)(a). 

 

(b) When   (  )    (  )   . Denote the neighbors of    and    by 

  (  )  *          + and   (  )  *        +, respectively, where 

  ,    are pendant vertices and   (    )   (  )   . 

 Let      *      + *                       + and let 

     *                   +. We have      (   )
   and    is a 

perfect matching of   ; see Figure 9. Now by induction hypothesis, we 

have 

            ( )     (  )   (   )   (   )   (   )    (   )    (   ) 

                          (    (    ))   (    (  ))   (  (    )   (  ))    

Since   (    )   (  )    and  (   )   (   )   (   ), where      
Then, we have   

                               ( )   (   )  
   

  
  ( )  

 

  
  ( )  

This follows from Equation 4. 
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Figure 9: Illustration for the Case (B)(b). 

 

(c) When   (  )    and   (  )   . Let      *    + 
*           + and      *         +. Note that      (   )

  and 

   is a perfect matching of   ; see Figure 10. By induction hypothesis, 

we have  

   ( )     (  )   (   )   (   )   (   )   (   )   (   )   (   ) 

                          (   )  
  

 
  ( )   

which follows from Equation 4. 

Hence in that subcase result is true. 

 

Figure 10: Illustration for the Case (B)(c). 

 

SUBCASE (1.1)(IV).2: If no pendant vertex has a degree two neighbor in      
 . 

 Since   is a bicyclic graph where each of its non-pendant vertex has a 

pendant neighbor, it follows immediately that   is isomorphic to one of the graphs 

in the subcollection   
 ,   

 , as shown in Figures 5(a) and 5(b), that is     
  or 

    
 . 

 By direct computation, we find that    (  
 )  

 

 
(      )  and 

   (  
 )  

 

 
(      )   

(a) If   is even, then from Equation 4, we have  

  ( )     (  
 )  

 

 
(      )  

 

 
(      ) 

                                   
 

  
(     )                

(b) If   is odd, then from Equation 4, we have  
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                        ( )     (  
 )  

 

 
(      )  

 

 
(      ) 

                                                      
 

  
(     )                

This implies the result is true in this subcase.  

 

SUBCASE (1.2) If      
  and each non-pendant vertex of   has a pendant 

neighbor. 

I. If      then graphs of    
  have edge-degree partition as given in Table 4. 

From direct observation, we have    ( )   ( )    , and equality is 

attained by class (VI) in Table 4. Note that the graph in class (VI) represents 

  
   that is, equality holds if     

 (  ). 
 

Table 4: Edge-degree partition for graphs in    
   

Classes                                     

I 0 4 2 0 0 1 6 0 36.33 

II 0 4 2 0 0 2 4 1 36.166 

III 1 2 3 0 1 0 4 2 36.75 

IV 1 2 3 0 1 1 2 3 36.58 

V 1 2 3 1 0 0 3 3 36.33 

VI 2 0 4 0 2 0 0 5 37 

 

II. If      then graphs of    
  have edge-degree partition as given in Table 5. 

From Table 5,    ( )   ( )        and equality is attained by the 

graphs in class (VIII) of Table 5, whose edge-degree partition represents 

  
 (  )  that is, equality holds if     

 (  ). Thus the results hold for 

    and      
 

             Table 5: Edge-degree partition for graphs in    
 . 

Classes                                     

I 0 5 2 0 0 2 6 0 41.66 

II 0 5 2 0 0 3 4 1 41.5 

III 1 3 3 0 1 0 6 1 42.25 

IV 1 3 3 0 1 1 4 2 42.08 

V 1 3 3 1 0 0 5 2 41.83 

VI 1 3 3 1 0 1 3 3 41.66 

VII 2 1 4 1 1 0 1 5 40.08 

VIII 2 1 4 0 2 0 2 4 42.5 

 

III. For      we prove by induction by assuming that the result holds for 

   
          where each non-pendant vertex of      

  has a pendant 

neighbor. 
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Let   be the perfect matching of      
  where each non-pendant vertex of 

  has a pendant neighbor. Let         be the pendant vertices adjacent to the 

vertices          respectively, where   (  )              . Note that 

*    +   , for            Similar to Case (1.1)(iv), we consider the following 

two subcases to complete the proof. 

(a) If      
  has a vertex   *       + such that   ( )      

Proof of this subcase is similar to Subcase (1.1)(iv).1. 

(b) If no pendant vertex has a degree two neighbor in      
 .  

In this subcase, we find that   is isomorphic to one of the graphs in the 

subcollection   
    

   that is, either     
  (see Figure. 5(c)) or     

  (see 

Figure. 5(d)). By direct computation, we have that  

   (  
 )  

 

 
(      )  and    (  

 )  
 

 
(      )  

i. If   is even, then from Equation 4, we have  

 ( )     (  
 )  

 

  
(     )     since      

ii. If   is odd, then from Equation 4, we have  

 ( )     (  
 )  

 

  
(     )     since      

Hence, if each non-pendant vertex of a bicyclic graph       has a pendant 

neighbor, then    ( )   ( ). 

 

CASE (2) Suppose   has at most     pendant vertex, then   has at least one 

vertex not adjacent to a vertex of degree one.  

From Lemma 2.2, it is immediate that the contribution of a vertex in the 

SDD index is maximum if that vertex has a pendant neighbor. Further, in Case (1), 

we have shown that    ( )    ( ), when each non-pendant vertex of a bicyclic 

graph   has a pendent neighbor, implying    ( )   ( ), if   has at the most 

    vertex. 

 Hence, to summarize, if      
 , then    ( )   ( ) and equality holds 

if and only if     
 (  )       If      

 , then    ( )   ( )  and in that 

case, equality does not hold. Finally, if      
    then    ( )   ( ) and equality 

holds if and only if     
 (  )                                                                          ■ 

 

4. CONCLUSION 

In this article, we have studied the first five minimum values of the SDD index attained by 

the bicyclic graphs having a perfect matching. One of our main contributions in this study 

is identifying the graphs that attain the stated bounds. Further, we have also computed an 

upper bound of the SDD index for bicyclic graphs with a maximum degree of four, which 

admits a perfect matching, and have shown that the given bound is tight. 
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