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Assume   denotes a connected and simple graph with edge set 

     as well as vertex set     . In chemical graph theory, the 

atom-bond connectivity     index as well as the Randić index of 

graph   are two well-defined topological indices. In addition, Ali 

and Du [On the difference between     and Randić indices of 

binary and chemical trees, Int. J. Quantum Chem. (2017) e25446] 

recently unveiled the distinction between Randić and     

indices. In this report, we study the link between the difference of 

Randić and     indices with certain well-studied topological 

indices.  
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1. INTRODUCTION  

Let   resembles a simple graph possessing edge set      as well as vertex set 

    . Subsequently, let    express the  degree of vertex       . Let      and      

                                                 

Corresponding author (Email: hroslan@umt.edu.my). 

DOI: 10.22052/IJMC.2022.246069.1611 



20                                                                  HASNI, HUSI, MOVAHEDI, GOBITHAASAN AND AKHBARI
 

 

express the maximum and minimum degree of  , accordingly. Then the distance         

between the vertices   and   is described as the shortest path length connecting them for 

        . The greatest distance between the vertex   and any other vertices in   is 

termed as the eccentricity of   in   and is represented by      with respect to a vertex 

      . Please refer to [37] for any Graph Theory terminologies and notations not 

included here. 

The topological indices [9] are among the many convenient tools developed by 

graph theory for chemists. Molecular graphs are frequently employed to model molecular 

and molecules compounds. One of the earliest and extensively utilized descriptors in 

QSAR/QSPR research [33] is molecular graphs’ topological indices. 

The Randić was suggested by Randić [27] in the year 1975 for evaluating the 

branching extent of the saturated hydrocarbons’ carbon-atom skeleton, described as given 

below:  

      ∑         
 

√    
  

The general Randić index, expressed by    [2] was described as  

          ∑               
 , 

in which   denotes any real number. 

The (first) geometric-arithmetic graph index was described in [34] as  

          ∑         
 √    

     
  

The harmonic graph index was described in [20] as  

      ∑         
 

     
  

Explanation regarding the Randić index and the majority of its corresponding 

mathematical features may be discovered in [15, 22], the surveys [23, 28] and some recent 

papers [19, 21]. 

Estrada et al. [12] suggested a topological index known as atom-bond connectivity 

(    for short) index employing Randić modification index. The     index of   is 

characterised as  

        ∑         √
       

    
  

When the paper [11] was published 10 years later, this index grew popular. The 

    index's mathematical features have been widely investigated since then. Readers are 

referred to the survey [16], the latest papers [6, 10, 14, 32, 38] and related references cited 

therein for further information. 

In keeping with the popularity of topological indices, several scholars are interested 

in investigating the comparison or relationship of topological indices; for instance, refer [7, 

8, 30, 40]. Consequently, Ali and Du [1] lately developed several extremal findings for 

binary and chemical trees in terms of the difference between the Randić index and     

index. Wan Zuki et al. [36] investigated more extremal values of the difference between the 



Difference of Two Topological Indices                                                                                           21 

 

Randić index and     index for chemical trees and obtained an upper bound for such trees 

with given number of pendant vertices. Provided that the maximum vertex degree in   is at 

most 3 (4, accordingly), it is considered to be a binary tree (chemical tree, accordingly). 

For    , provided that   denotes an  -vertex connected graph, the difference of 

    and Randić indices is expressed by       index and is characterized as follows: 

           ∑         
√         

√    
  

Notice that              with equality attains when   is isomorphic to 

  , the 3-vertex path graph. We consider     for the remaining part of this paper. 

 The first Zagreb index may also be represented as a sum over   edges [17], 

       ∑                  

Further results on Zagreb indices please refer to [13, 35, 39], recent surveys [3, 4] 

and the references cited therein. 

The reciprocal products’ sum degrees of adjacent vertices’ pairs [31] is equal to the 

modified second Zagreb index   
    , that is, 

  
     ∑         

 

    
  

In [18], the latest version of Zagreb indices is characterized as given below: 

     
     ∑         [         ], 

    
      ∑               , 

     
     ∑                   

The disparity between the two topological indices was not taken into 

account, considering the apparent cause that it might have positive, zero, or negative values 

for structurally similar graphs. We expect to fill up some of the gaps in this work. We 

establish some new relations between the difference of     and Randić indices with some 

well-known topological indices. 

 

2.  RELATION BETWEEN THE DIFFERENCE OF ABC INDEX AND RANDIĆ   

INDEX WITH RESPECT TO OTHER TOPOLOGICAL INDICES 

 

This section contains some relations between the difference of     index and Randić 

index (or       index) with some other topological indices. We will make use of the 

following mathematical inequalities of real number sequences. 

 

Theorem 1. (Jensen's inequality [25, 24]) Let       ,          , resembles a 

sequence of non-negative real numbers, as well as       ,          , resembles a 

sequences of positive real numbers. Therefore, for any real number   with     or    ,  

 ∑   
       

  ∑   
     (

∑   
       

∑   
     

)
 

                                            (1) 
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Theorem 2. ([29, 24]) Let        and       ,          , resembles two sequences 

of positive real numbers. With any     ,  

∑   
   

  
   

  
 
(∑   

     )
   

(∑   
     )

                                            (2) 

We develop an upper bound for the difference of Randić and     indices in regards 

to the first Zagreb index. 

 

Theorem 3. Let   denote a graph with   edges, minimum degree   and the first 

Zagreb index      . Therefore  

            √         
 

    

Proof. Let   resembles a graph possessing   edges, minimum degree   as well as the first 

Zagreb index      . Notice that        for each        and by the Cauchy-Schwarz 

inequality, we acquire 

           ∑         
√         

√    
 

  √∑         (√         )
 
∑         

 

    
 

  √∑         (           √       )∑         
 

    
 

  √∑                  ∑         
 

    
 

  √         
 

    

The proof is now completed.                                                                                                  ■ 

 

In regards to the modified second Zagreb index, we now establish lower and upper 

bounds for the difference between the Randić and     indices. 

  

Theorem 4. Let   resembles a graph having   edges, minimum degree  , maximum 

degree   as well as modified second Zagreb index   
    . Therefore  

 √       √  
     

      

  
             √       √  

     
      

  
, 

having equality if and only if   denotes a regular graph.  

 

Proof. Let   resembles a graph having   edges, minimum degree  , maximum degree   

including the modified second Zagreb index   
    . We recognise that             for 

all edges           and        for all vertices        . By the       index’s 

definition, we obtain 
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            ∑           

(√         )
 

    
 

   ∑                 
√         

√    
  

√         

√    
  

  ∑           
(√      )

 

    
 ∑                 

√      

 
  

√      

 
  

  (√      )
 
(  

     
      

  )   

Similarly, 

              ∑           

(√         )
 

    
 

      ∑                 
√         

√    
  

√         

√    
  

     ∑           
(√      )

 

    
 ∑                 

√      

 
  

√      

 
  

     (√      )
 
(  

     
      

  )   

The equalities are true if and only if            , for each         

indicating that   refers to a regular graph.                                                                             ■ 

  

Theorem 5. Let   resembles a graph having      vertices,   edges, minimum degree   

as well as maximum degree  . Therefore  

 
√      

 
             √      

Proof. For the lower bound, we obtain 

            ∑           
√         

√    
 

∑           √         

∑           √    
  

Provided that             for all edges          , we acquire  

                         
∑           √         

∑           √    
 

√      

 
  

Since 

 ∑           
√         

√    
 ∑           √       , 

and by employing the Cauchy-Schwarz inequality, we get 

 ∑           √        √∑            ∑                       

Provided that             for all edges          , we obtain 

 √∑            ∑                     √∑            ∑                

                                                      √      

The proof is then completed.                                                                                                  ■ 
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Theorem 6.  Let   resembles a graph having   edges,   pendant vertices, minimum 

degree   as well as maximum degree  . Therefore 

 
√      

 
      

√     

√ 
             

√      

 
      

√     

√ 
  

with equality if and only if   resembles a regular graph.  

 

Proof. Provided that             for all edges           and        for all 

vertices        . In addition to from the       index’s definition, we obtain  

                             ∑           

       


√         

√    
 ∑           

    


√         

√    
 

                     ∑           

       


√      

 
 ∑           

    


√        

√  
 

                     ∑           

       


√      

 
 ∑           

    


√       

√ 
 

                    
√      

 
      

√     

√ 
   

 

Similarly,  

                             ∑           

       


√         

√    
 ∑           

    


√         

√    
 

                  ∑           

       


√      

 
 ∑           

    


√        

√  
 

                  ∑           

       


√      

 
 ∑           

    


√       

√ 
 

                 
√      

 
      

√     

√ 
   

The equalities are true if and only if            , for every         indicating 

that   resembles a regular graph.                                                                                           ■ 

   

We now determine an upper bound for the difference of Randić and     indices 

with respect to Randić index. 

  

Theorem 7. Let   resembles a tree having   vertices. Therefore  

                (√     ), 

with equality if and only if   denotes a star graph.  

  

Proof .Provided that        , for every          . Moreover, from the       

index’s definition, we obtain 
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                           ∑           
√         

√    
 ∑           

√     

√    
 

                 √     ∑           
 

√    
 

                 (√     )      

The equality is true if and only if        , for every        , implying that   

expresses a star graph.                                                                                                           ■ 

  

Theorem 8. Let   resembles a graph having   edges, minimum degree   as well as 

maximum degree  . Therefore  

             (
√      

 
)  

with equality holds if and only if   denotes a regular graph.  

 

Proof. By the       index’s definition and from Cauchy-Scharwz inequality, we obtain 

             (∑           
√         

√    
)
 

 

                               ∑           (
√         

√    
)
 

 

                               ∑           (
√      

 
)
 

 

                                (
√      

 
)
 

  

The equalities are true if and only if            , for every        , implying 

that   resembles a regular graph.                                                                                       ■ 

   

Lemma 1. (Pólya-Szeg ̈ inequality [26]). Given that              as well as 

            , for        . Then  

 ∑   
     

 ∑   
     

  
 

 
(√

    

    
 √

    

    
)
 

 ∑   
        

                       (3) 

Theorem 9. Let   resembles a graph having   edges, minimum degree   as well as 

maximum degree    . Therefore 

            
 

√      

 

 

 
(√

 (√      )

 (√      )
 √

 (√      )

 (√      )
)

  

with equality if and only if   denotes a regular graph.  
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Proof. For    
√         

√    
,     ,    

√      

 
,    

√      

 
 and        , by 

Inequality (3), we have 

 ∑           (
√         

√    
)
 

∑             
 

 
(√

 (√      )

 (√      )
 √

 (√      )

 (√      )
)

 

 

                                           (∑           
√         

√    
)
 

                                (4) 

Furthermore, provided that             for all edges          , we now obtain  

∑           (
√         

√    
)
 

∑             ∑           (
√      

 
)
 

∑             

   (
√      

 
)
 

                                                       (5) 

Now the proof follows immediately from Inequalities 4 and 5. The equalities are 

true if and only if            , for every        , implying that   resembles a 

regular graph.                                                                                                                      ■ 

   

Thus, we now give an upper bound for the difference of Randić and     indices in 

respect to general Randić index    when     . 

  

Theorem 10. Let   resembles a connected graph having   edges. Therefore  

            √ (√      ) (
 √    

         )   

 

Proof. Setting    ,     
 

√    
 and     √          for every    

    , applying Theorem 1 as well as definition of       index, we obtain 

 

 
 √    

          ∑         
√       

    
 ∑         

 

    
 

                    ∑         
√         

    
 

                    ∑         
√         

(√    )
  

                     ∑          √          (
∑         

√         

√    

∑         √         
)

 

 

                     
(∑         

√         

√    
)
 

∑          √          
 

                     
        

∑         √        ∑          
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 (√      )
  

which implies the desired bound.                                                                                       ■ 

 

An upper bound for the difference of Randić and     indices in respect to general 

Randić index    when    
 

 
 is given below. 

  

Theorem 11. Let   resembles a connected graph having   edges as well as minimum 

degree  . Thus  

            
  

 
 
 

     √    

 
  

 

Proof. Setting    ,     
 

√    
  and     

 

√         
 for every        , applying 

Theorem 2 and definition of       index, we obtain 

            ∑         

(
 

√    
 )

 

 

√         

 

                                                    
(∑         

 

√    
 )

 

(∑         
 

√         
)
 

                                                          
( 

 
 
 

   )

 

(∑         
 

√         
)
 

                                                    
( 

 
 
 

   )

 

(∑         
 

√       
)
 

                                                    
  

 
 
 

     

 

√    

  

as well as implying the desired bound.                                                                    ■ 

  

Therefore, we introduce a relation between the difference of Randić and     

indices with geometric-arithmetic index.  

 

Theorem 12. Let   resembles a connected graph having     edges and geometric-

arithmetic index      . Therefore  

            
               √       
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Proof. Setting    ,     
√         

√    
 and     

 √    

     
 for every        , applying 

Theorem 2 as well as definition of       index, we obtain  

 
(√      )

 
  

 
  
 

 ∑         
(√         )

 
       

 

 √       
  

                        ∑         

(
√         

√    
)
 

(
 √    
     

)
  

                        
(∑         

√         

√    
)
 

(∑         
 √    
     

)
  

                        
             

        
  

 

as well as implying the desired bound.                                                                                   ■ 

   

Relation between the difference of Randić and     indices with Harmonic index is 

provided below. 

  

Theorem 13. Let   resembles a graph having   edges, minimum degree   and maximum 

degree  , as well as Harmonic index     . Therefore  

            
 √    

 
       

  

Proof. By using geometric and arithmetic inequalities and definition of       index, we 

possess 

                                 ∑         
√         

√    
 

                                    ∑         
 √         

     
 

                                    ∑         
 √       

     
 ∑           

 

     
 

                                     
 √    

 
       

as well as implying the desired bound.                                                                                    

3.  CONCLUSIONS 

We derived some bounds for the difference of Randić index and atom-bond connectivity 

    index (shortly called       index) in this research, as well as its connection with 

certain other topological indices. Given the amount of study done on the Randić and atom-

bond connectivity indices, it is suprising that these two well-known indices were not 
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compared directly. Hence, this study fills the gap and may act as an eye-opener for further 

research into the characterization of graphs with maximum or minimum values for the 

difference of Randić and     indices. Moreover, Chen and Guo [5] demonstrated that 

when one edge is removed from a graph, the     index of the graph reduces. It is also 

worth looking at what occurs to the       index when an edge is removed. 

To round off the paper, we suggest the following open issues:  

Problem 1. Does the bound to be obtained better than the existing ones and it is possible to 

sharpen the bounds to be obtained?  

 

Problem 2. Characterize the graphs with maximum or minimum values for the difference 

of Randić and (   ) indices with certain parameters, for instance, matching 

number, chromatic number, domination number etc.  

 

Problem 3. Study the behaviour of the       index either increase or decrease when 

any edge is deleted. 
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