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1. INTRODUCTION

A number that can be used to characterize the graph associated with a molecule is called a
topological index, this number is also known as a graph invariant by graph theorists [20]. It
is said that the first of these graph invariants was the number of carbon atoms in
hydrocarbon molecules, which is precisely the number of vertices in a graph of a molecule
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with hydrogens suppressed, this number was used around 1842 [6]. However, the term
"topological index" was used for the first time in 1971 by Hosoya [13], in his paper, he
defined the invariant Z in three steps and called it topological index.

Among the best known and studied indices are the
Wiener, Zagreb, Randi¢, Hosoya, Balaban, and Schultz. These indices are given by
formulas that involve properties of the graph, for example, degrees of vertices, number of
edges, cyclomatic number, distances between vertices or matchings.

Generally, topological indices are correlated with some physical or chemical
properties of a molecule, the first one for being used this way was the Wiener index
[21], proposed in 1947, back then called “the path number”, defined as the sum of distances
between two carbon atoms of a molecule and used to compute the boiling points of
alkanes. Clearly, this index was not defined in terms of graph theory. In the same
way, Hosoya [13] pointed out that this number could be obtained as half of the sum of the
entries of the distance matrix of the graph associated with the molecule. This index has
been studied for a long time since its first appearance from different perspectives, for
example, in [15] it is compared with the Szeged index, in [2] it is computed for the semi-
complete product and [14] shows an explicit formula for it of Dutch windmill graphs.

Another index widely studied, and that has a close relationship with that of
Wiener, is the Schultz index. This one was proposed in 1989 by Harry P. Schultz [19], and
its original purpose was to give a technique for determining a molecular topological index
to describe the structure of alkanes. Later, Gutman [10] studied this number, its relation
with the Wiener index, called it Schultz index (also called degree distance in the literature)
and defined a modification of it. As the Wiener index, Schultz index has been broadly
studied and compared with other indices, for example, in [16] an explicit relation between
Wiener and Schultz indices is found for acyclic graphs, in [3] is analyzed this index under
the join and the strong product of graphs and in [4] an extension of the cut method is
applied to this index.

It is known that there are some binary operations (products) between
graphs: cartesian, strong, lexicographic, corona, and tensor, to name a few; and these have
been studied from several perspectives, for example, [11] is a book which is a standard
reference on graph products since it deals with algebraic aspects, some algorithms, and
invariants; in [9] the Wiener index is computed for the cartesian product; [15] gives a
formula for the Szeged index of the cartesian product; in [5] complete information about
the spectrum and the Laplacian spectrum of the corona product is given; [22] shows the
Szeged, vertex PI, first and second Zagreb indices for the corona product, in [8] a
characterization for the hyperbolicity of lexicographic product of two graphs is given in
terms of the factors and in [17] the chromatic number and the circular chromatic number
for the cartesian sum is investigated. Even though the significance of most graph products
in chemistry is not apparent until now, some of them at times are used in problems in
chemical reactivity [6], moreover, there are examples of chemical structures which can be
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seen as products: the alkane C;Hg is the corona of P; and E,, the cyclohexane C4H;, is the
corona of C4 and E,, the nanotube TUC,(m,n) is also the cartesian product of P, and
P,, and C,, and P, and a fence and closed fence are the lexicographic product of P,, and
P,, and C,, and P,, respectively [7].

In this paper, we give explicit formulas for the Schultz index of the
cartesian, corona, and lexicographic product graphs as well as of cartesian sum, besides we
compute explicitly the Wiener and Schultz indices for some graph families.

2. PRELIMINARIES

In this section we set some notation and concepts used throughout the paper, these are
taken from [12] and [20]. By graph we mean a simple graph with no loops and it is denoted
by I' = (V,E), where V and E are the vertices and edges sets, respectively, |V| is called the
order of I" and |E| its size. Let ' = (V, E) be a graph:
e for v € V, degv denotes its degree, that is, degv = |[{x € V:xv € E}|. If degv =
k, forall v € VV, then we say that T' is k-regular;
o foru,v eV, awalk from u to v is a sequence of vertices u = xg, X1, ..., Xp—1, X =
v such that x;x;,,; € E, for i =0,1,...,r — 1, this sequence is called a u—v
walk, a u — v walk which does not repeat vertices is called a path;
o if for any u, v € V there isau — v walk, I is called connected,;
« for I connected and u, v € V, the distance between u and v is
d(u,v) = min{length of u — v walks},
where the length of a u — v walk is the number of edges in such a walk;
« for I connected, the diameter of T is
diamI’ = max{d(u,v):u,v € V};
« the Zagreb index of T is defined as
My (T) = Yypey deg?v.

Next we recall the definition of some known families of graphs. Let n be a positive
integer, then
« the path graph is defined as the graph P,, = (V, E) with
V=A{vq,..,v,} and E ={vv;:i=1,..,n—1};
« for n > 3, the cycle graph is defined as C,, = (V, E), where
V=A{vy..,v,} and E ={vv;:i=1,..,n}
where n + 1 is taken as 1;
« the star graph is S,, = (V, E) with
V ={vy,vy1,...,v} and E ={vyv;:i =1,..,n};

« the wheel graph is the graph W,, = (V, E) with
V ={vy,vq,...,0} and E = {vyv;, v;vi;q:i=1,..,n},
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where n + 1 is taken as 1;
« the complete graph is the graph K,, = (V, E') with
V={vy,..,m} and E={vw:i,j=1,..,nandi # j}.

3. THE SCHULTZ INDEX

In this section, the Wiener and Schultz indices are defined and formulas for these applied to
some known families are stated.

Definition 1. [20] Let I' = (V,E) be a graph, the Wiener index of I" is defined by the
formula W (I") = Y,+» d(u, v), where the sum runs over all pairs of distinct vertices of T

Note that if V = {v, ..., v, }, the Wiener index of I can be written as

1 _
w(T) = > 1 Xy d ) = X X d(vv)).

The following proposition states the precise value of the Wiener index for some
families of graphs.

Proposition 3.2. Let n be a positive integer, then
1. WP) =nn—1n+1)/6;
n3/8, if n=2k;
2. W(Ca) = {(n3 -n)/8, if n=2k—1;
3. W(S,) =n?;
4. W(W,) =n(n—1);
5 WK, =nn-1)/2.

Proof. All these formulas follow from the very definition, we just show the proof for paths
and wheels. For paths we may observe that d(v;, v;) = j — i, for i < j, thus,

W(P,) = XI5 i d(wi, )
S A2+ A —D)+ A2+ M —2) -+ (L +2)+1

_mn | eeen) L 20) L 1@)
2 2 2 2

_1 (n(n+1)(2n+1) _ n(n+1))

) 6 2

= n(n—D(n+1).
And for wheels we have d(v.,v;) = 1,fori =1, ...,n,and
(1, if j=it+1;
d(vy,vy) = {2, otherwise ,
thus,
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W(Wy,) = X5 7=i+1 d(v;, vj)
=1+ +D+A+2+4+2+D+A+2++2)++(1+2)+1
=n+Q2+2n-3)+A+2n-3)+--+(1+2(1))+1

= (2n-2) +2 ("222)

=n?—n.

Next, the definition of the Schultz index is given. It can be seen that this index is
related to that of Wiener, indeed Lemma 3.1 shows one explicit relation between them.

Definition 2. [10] Let I' = (V,E) be a graph, the Schultz index of I' is defined by the
formula S(T") = Y., (degu + degv)d(u, v), where the sum runs over all pairs of distinct
vertices of I'.

Note that if V = {v,,...,1,}, then the Schultz index of I" can be computed as
follows
1
ST =3 3%

=1 (degv; + degv;)d(v;, vj)
=ynrt i=ir1 (degy; + degv))d(v;, v)).

The next lemma shows an explicit relation between Wiener and Schultz indices, and
its proof follows from the definition.

Lemma 3.1. Let I" be a k-regular graph, then S(I") = 2kW (I).
Now, we state the value of the Schultz index for some families of graphs.

Proposition 3.2. Let n be a positive integer, then
1. S(P) =n(n—1)(2n—-1)/3;

n3/2, if n=2k;
2. 5(C) = {(n3 —n)/2, if n=2k-1;
3. 5(5,) =n(3n—-1),
4. S(W,) =n(7n—-9);
5. S(K,) =n(n—1)=2

Proof. These formulas are not difficult to prove, we just show the proof for those of paths
and cycles. For paths, since every vertex of P,, has degree 2, but v, and v,,, we get
S(Py) = XI5y Xiiv (degy; + degv))d(v;, v))
=3n—-2)(n—-1)+2(n—-1)

+4 ((n—3)(n—2) + (n—4)(n-3) ot @)
2 2
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=3n-2)(n—-1)+2(n—-1)
+2((n—22-n-2)+(n—-32-m-3)+-+22-2)
=3n—-2)(n—-1)+2(n—-1)
+2 ((n—Z)(n—l)(Zn—3) . (n—Z)(n—l))
6 2
_ n=1@n-1)
3 :
And for cycles note that C,, is a 2-regular graph, thus, by Lemma 3.1. we have S(C,) =

4W (C,), hence,

n3 .
Py if n=2k;
S(Cn) = 3

n-—nm

. if n=2k-1
There is another relation between Wiener and Schultz indices for trees, which is
given in [10], it says that if T is a tree with n vertices, then
S =4wT) —n(n—-1).
We obtain immediately the following corollary which relates these indices for the families
we have considered.

Corollary 3.1.
1. S(P,) =4W(P,) —n(n— 1),
2. 5(Cp) = 4W(Cp);
3. S(Sp) =4W(S,) —n(n+ 1);
4. S(W,) = TW(W,) — 2n;
5. S(Kp) =2(n—1DHW((K,).

4. THE SCHULTZ INDEX FOR GRAPH PRODUCTS

In this section, explicit formulas are given for the Schultz index of the
cartesian, corona, and lexicographic products as well as of the cartesian sum, the first three
involve both Wiener and Schultz indices of factors, corona and lexicographic also involve
Zagreb index and just Zagreb for the last one. It is worth mentioning that the Schultz index
for the cartesian and corona product has been already computed in [18] and
[1], respectively, nevertheless, we present the formulas and give alternative proofs for
them. From now on the graphs we mention are connected, unless we say otherwise.

4.1 CARTESIAN PRODUCT

Definition 3. [11] Let I3 = (V3,E;) and [, = (V,,E,) be two graphs. The cartesian
product of I7 and I, is defined as the graph I' = (V,E) given by V =V, XV, and E
={(w,y)(w,y"):yy € E;} U {(x,v)(x',v): xx" € E;}. We denote this graph by I} X T,.
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From the definition, we may observe immediately that this operation
commutes, that is, I} x I, = I, X I, Figure 1 shows a representation of the cartesian
product of P; and C,. Moreover, it is worthy to note that for any vertices (u, v) and (x,y)
in I} x T, the following relation holds

deg(u, v) = degu + degv.

[,
[ ]
~

Figure 1: A representation of P; X C,.

The following lemma is proved in [11] and relates the distance in the Cartesian
product with that of the factors.

Lemma4.l. Letl’ =17 X I, and let (u, v) and (x, y) be two vertices of I, then
d((w,v), (x,y)) = d(u,x) + d(v,y).

Theorem 4.1. Let I =(,4,E;) and I,=(V,E,) be two graphs, with
V1 = {ul, ...,unl}, VZ = {vl, ey vnz}, |E1| =my and IEzl =m,, then S(Fl X Fz) =
n,25(Iy) + n,2S(1,) + 4n,mu,W (1Y) + 4nym W ().

Proof. First note that
STy x ) = X2, X725 ! Y2 (deg(uy, vp) + deg(uy, v))d((w;, vy), (wy, vs))
2”“1 Yty Xi2y Xe2y (deg(uy, v)) + deg(ur, v5))d((wy, v)), (y, vs)),

that is, we may compute the Schultz index for this product by dividing the sum into two
parts: for i = r and for i # r. For i = r we have

ni an tyne j+1 (deg(uy, vy) + deg(u;, v))d((uy, vp), (uy, v5))

= Z 2"2_1 ZS 21 (2degu; + degv; + degvs)d (v, vs)

= Z an 1 ZS i (2degu;d (v}, vs) + (degv; + degv,)d(vj, vs))

= Z 2"2_1 ZS Zin 2degu;d(vj, vs) + Z an_l ZS Z i1 (degv; + degvs)d(vj, vs)
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= Z , 2degy; Z"Z 1 ZS 2 i1 d(vj,vs) + Z an_l Zs 2 (degv; + degv,)d (v}, vs)
= Zi=1 ZdeguiW(FZ) + Zi:l S(FZ)
== 4‘m1W(F2) + nls(r‘z).

While for i # r we get

ST R, 20 T, (deg(uy, vy) + deg(uy, vo)d((wy, v)), (i, 5))
=Y I an Y2y (degu; + degv; + degu,. + degus) (d (u;, ur) + d(v), v5))
=yt e Y721 Xi2y ((degw; + degu,)d(w;, u,) + (degu; + degu,)d (v, vy)
+ (degv; + degvs)d(u;, u,) + (degv; + degv,)d (v}, vs))
=y e Y21 X2y (degu; + degu,)d (u, uy)
+YET I Y721 Xi2y (degu; + degu,)d(vy, vy)
+ X T Y721 Xi2y (degy; + deguy)d(u;, ur)
+ 20 ! I Z L o2, (degy; + degvg)d(vj, vs)
=202 N2 ity 1 Yrlisq (degu; + degu,)d (uyuy)
+ 20 Ty (degu + degu,) X2, B2, d(v),v5)
+ 20 ! I d(ul,ur)z L o2, (degy; + degvy)
+YET I Y721 X2y (degy; + deguy)d(vj, vs)
= X702, 202, S(T) + T2 B0ty (degu; + degu,)2W (Iy)
+W ([T X2, X2, (degy; + degvy) + T Yt 25(T)
=n,25(I) + 4(n; — DmW(T,) + 4n,m,W (I}) + ny(n; — 1)S(T).

Taking the summation of these computations we obtain the result.

4.2 CORONA PrRoODUCT

Definition 4. [12] Let I; = (V4,E;) and I, = (V,, E;) be two graphs. The corona product
of I and I, is the graph I' = (V,E) given by taking one copy of I7 and |V;| copies of
I, joining the r-th vertex of I3 to every vertex in the r-th copy of 5. In symbols,

V=W, x{veh) UV, xV,) and

E = E; U{(ur, vi)(ur, vj): viv; € E2} U {(ur, vo) (Ur, v3): v; € V3},
where V; X {v,} are the vertices of the copy of I'; and V; x V, are those of the |V;| copies
of I',. We denote the corona product of these graphs by I; ©T,.
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Figure 2: A representation of P;©C,.

We may note that, in general, this operation is not commutative, that is, I; ©I', %
I, ©T;, Figure 2 shows a representation of the corona product of P; and C,. Moreover, it is
straightforward to verify that for a vertex (u, v) of I'; ®I,, we have
_ (degu + |V,|, if v=uv,
deg(u,v) = {degv +1, otherwise.

Observe that if a and b are two vertices of I'; O, then exactly one of the following
cases holds.
* a and b are in the copy of I';;
* a is in the copy of I; and b in the j-th copy of I, (the one which makes a cone
with the j-th vertex of I;);
* a is in the i-th copy of I, and b in the j-th copy of T,;
* a and b are in the i-th copy of I,.

The following result follows easily considering these cases.

Lemma 4.2. Let I' = [[OI;, and consider a = (u;,v.) and b = (u;, vg) two vertices of
I, then

fd(ui,uj), for case i;

! d(ui,uj) + 1, for case ii;
d(a,b) = d(u;,u) + 2, for case iii;

Lmin{d(vr, v5),2}, for case iv.

Let T} = (V1,E;) and T, = (V,,E;) be two graphs, with V; = {uy,..,u,,} and
V, = {vy, ..., v, } and consider I' = (V, E) as the corona product of I; and I,. Note that we
may compute S(I') by calculating some sums separately, considering the cases for where
are taken the pairs of vertices, as follows.
S(T) = Y 4+p (dega + degb)d(a, b)
= X Xt (deg(uy, vo) + deg(uy, v0))d((wy, vo), (ur, Vo))
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+ 2 ek 252y (deg(u;, vo) + deg(uy, v5))d ((wi, vo), (ur, v5))
+ X N X (deg(ui,v»+deg<ur,vo>>d((ui.vj> (ur, vo))

+ 2T R B 202, (deg(wy, vy) + deg(uy, v))d((us, ), (ty, v5))
+ X N0t N, (deg(ui,v»+deg(ui,vsnd((ui.vjl(uwvsD-

Thus, the flrst part is determined for the case (i), the second and third for case (ii), the
fourth for (iii) and the fifth for (iv).

For the first part of the sum we have
Y Ert g (deg(uy, vo) + deg(ur, v9))d (g, o), (Ur, v0))
=y 1 Yt (degu; + degu, + 2n,)d(u;, u,)
=y 1 Yl (degu; + degu,)d(w, uy) + 2n,d (uy, uy)
= S(Iy) + 2n, W (Iy).
For the second part
PHEND W £ (degu, o) + deglt )W o), (. v9))
= an 1 Zr i+1 Ds2q (degu; + degvs +ny + 1)(d(u;uy) + 1)
=Y I X2 degu(d(ug,uy) + 1)
+ymot e degvs(d(ul,ur) +1)
+(np + DIET 'y e 02 () + 1)
=n, N, 1 Yt degy; d(ul,ur)
+ n, an ! Zr i4q degu; X0, degvsznl_1 ripr @upu) +1)
+ (g + DI I T62 (@ un) + 1)
=n, an_l Yt deguid(ug,uy) +n, an_l Yt degu; + X102, deguW (I)
+ WZS=1 degus + ny(n, + W () + nZ(n2+1)2n1(n1_1).
For the third one
S S 202, (deg(uy, vy) + deg(uy, v0))d (s, v)), (ur, v))
=¥ S0t 202 (degyy + 1+ deguy +np) (d(up uy) + 1)
= N kg 2 degup(d(upu) + 1) + X SN B2 degry(d(ugu) + 1)
+ (n; + 1) an_l Z:-lii+1 '— (d(u,ur) +1)
=n, 2?11 ! Zr ir1 degu,d(u;, u,) + 1, an_l Zr i1, degu, + Z , degv;W (I)
N an ny(ny 21)degv] oy, + W) + nz(n2+1)2n1(n1 n
Now, for the fourth part
DHANED NP Nl £ (dea(u) + deglur v (o). (i)
= Y X S Xe2, (degyy + degys + 2)(d(u uy) + 2)
Zn1_1 Z L Xrtien 2oy (degu; + degug)d (uy, u,)
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+2 2"1_1 Z ZT i+1 (degv] + degvs)
2T B0 N 92y d(wwn) + X X2 B0k, 52 4
= 2n, Z , degy; X7 ! Zr i1 AU un) +ny(ng — 1)(2n,) Z , degy;
+2n,2 Y0 ! Yty d(u ) + nny(ng — 1)2
=2n,W () Zj=1 degv; + 2nyny(ny — 1) Z].=1 degv; + 2n,°W(Iy) + 2ny%ny (ng — 1).
Finally, for the last part
T Xiet a4y (deg(uy, vp) + deg(uy, v))d((wy, vy), (wy, vs))
= Z an_l ZS 241 (degv; + degvg + 2)(min{d (v}, vs),2})
+ Z- Z , (degu; +n, + degvg + 1)
=n, N1 degul +ny Y2, degvg + nyny(ng + 1)
+ny Z"Z S a2 241 (degy; + degug + 2)(min{d(v;, v5),2})
=n, 2, degu; +ny Y2, degvs + nyny(ny + 1)
+ny 2?211 ZS Zi+1 (degv; + degvg)(min{d (v}, v5),2})
+2n, 272" X125, min{d(v;, v5),2}.
Observe that
272 2524 (degyy + degumin{d(vy, v:),2} = By ver, (degy; + degy)

+ Yovjvee, 2(degy; + degvy),
since, d((w;, vj), (u;, vs)) = 1, for vyvs € E,, and d ((w;, vj), (w;, v5)) = 2, when v; and vy
are not adjacent, then v; is degv; times in the first sum, for j = 1, ..., n,, thus,

Y veek, (degy; + degry) = 72, deg?v;
and in the second sum v; is n, — (degv; + 1) times, which implies
Zv,-vseEEz (degv; + degv,)2 = Z}Zl 2degv;(n, — (degv; + 1)),
obtaining
Y21 6241 (degy; + deguy)min{d(vy, vy),2}
=72, deg?v; + X2, 2degv;(np — (degy; + 1))
= Y72, deg?v; + 2n, 172, degy; — 2X72,; deg’v; — 2377, degy
= 4n;m, — X712, deg?v; — 4my = dmy(ny — 1) — My(I2).
We may note that
Y21 Ne2 4 2min{d(vy,v5),2} = 2(np(ng — 1) — my),
since each of the n,(n, — 1)/2 pairs of the addends are at distance 2, but those m, which
are adjacent and, obviously, are at distance 1. Hence, the last part can be written as
2n,my; + 2n;m, + nyn,(n, + 1) + dnym,(n, — 1) —n M, (I;) + 2n,(n,(n, — 1) — m,).
Taking the summation of the five parts we get
S(T) = (ny, + DS + (2ny + 2n,(ny + 1) + 2n2)W(TY)
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+(4 + 4n,) m,W([I;) + 2my(ny(ny — 1) + 2nyny(ng — 1) +ny)
+2m;(ny(ny — 1) + ny) + nyny(n, + D (ng — 1) + 2n,%n,(ng; — 1)
+n,;n,(ny + 1) + 4nymy(n; — 1) — ny My (1) + 2ny(np(n; — 1) —my)
= (n, + 1)S}) +4ny,(n, + W () + 4my(n, + HW ()
+m,(4nyn 2 + 2ny%2 — 4nyny) + 2ny,nymy + 3n,%n.% + nyn? — 2ny%n,
+ 4nymy(n, — 1) —nyM; (1) + 2ny(np(n; — 1) — my).

Summarizing, we have proved the following result.

Theorem 4.2. Let I =(V,E;) and TI,=(V,E,) be two graphs, with
Vl = {ul, ...,unl}, V2 = {Ul, ...,Unz}, |E1| = ml and |E2| = mz, then
S(ILOL) = (n, + STy) + 4(ny, + my)(ny, + W (L) + 2nym,(2n,ng +nq — 3)
+ n1n2 (2m1 + 3n1n2 + n1 - 2) - nlMl(Fz).

The next corollary follows at once from this theorem.

Corollary 4.1. Under the hypothesis of the last theorem, if diaml, < 2, then
S(MOL) = (ny + S(Iy) + 4(ny + my)(ny + HW(I)
+nn,(2my + 3nyn, + ny — 2ny) + 2nym,(2nyn, + ny — 2ny)
+ 1y (S(T) + 2W (I)).

4.3 LEXICOGRAPHIC PRODUCT

Definition 5. [11] Let I; = (V4,E;) and I, = (V,, E,) be two graphs. The lexicographic
product of I3 and I, is defined as the graph I' = (V, E) givenby V =V, X V, and

E={(wv)(x,y):ux € E;} U{(x,v)(x,y): vy € E;}.
We denote this graph by I} o I,.

Observe that I'; o I, can be obtained by taking |V;| copies of T, and joining all
vertices of I, with all the vertices of I, (the copies corresponding to vertices u and
x, respectively), whenever ux € E;. Figure 3 shows the lexicographic product of P; with
Cy.

We may note that, in general, this operation does not commute. Moreover, it is not
difficult to verify that the degree of a vertex (u,v) of I;oI, can be obtained
as deg(u,v) = degv + degu - |V5].

Now, observe that given two vertices a and b of I; o I, we have

* a and b are in the same copy I, ,, or
* aisinacopy I, and b in another copy I} ,.
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Figure 3: A representation of P; o C,.

The following lemma follows quickly considering these cases.

Lemma 4.3. Let ' =1; o[, and consider a = (u,v) and b = (x,y) two vertices of

I, then
_min{d(,y)2}, if u=x;
d(a,b) = {d (u, x), otherwise.

Theorem 43. Let I =(,,E;) and I,=(V,E,) be two graphs, with
Vi ={uy, ,un 2, Vo = {1, ..., v, }, |E1| = my and |E,| = m,, then
STy o Iy) = n3S(Ty) + 4nymyW (Ty) + 4nymy (np(ny — 1) —my)
+ 4nymy(ny — 1) — ny My ().

Proof. First note that

STy olp) =X Srtiy, X712, B2, (deg(uy, vy) + deg(uy, v))d((us, v)), (uy, vs))

+3M, R (deg(uy, vy) + deg(uy, v6))d((uy, v)), (W, v5)).

thus, we may compute the Schultz index by dividing the sum into two parts: one for i # r
and the other for i = r. For i # r we have

Nt Mt 272, Xe2y (deg(uy, vy) + deg(uy, v))d((us, ), (uy, vs))

= X Tty 272, Xe2, (degvy + npdegu; + degs + nydegu,)d (uy, uy)

= Y Il T Xe2, np(degu; + degu,)d (ug, )

+ X ki X520 252 (degyy + deguy)d (u;, uy)

=1y X712y Doy Tity Drkies (degu; + degu,)d (u;, uy)

+ 372, Be2, (deg; + degug) T2 B0t d(up )

= n,35(T,) + 2n, Z’;il degv; W (Iy)

= n,35(Ty) + 4n,m,W (Iy).
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And for i = r we obtain
Z?:ll Z?i;l ?ij+1 (deg(u;, vj) + deg(uy, vs))d((w;, vp), (w, vs))
= Z;:l Z;.‘izl ’;ijﬂ (degv; + n,degu; + degvs + nydegu;)min{d(v;, vs),2}

=y Yt Z?ijﬂ (2nydegu; + degv; + degvs)min{d(vj, vs),2}

j=1
= 2n, 212, degy; Z;‘i;l o2 j+1 min{d (v}, v5),2}
+X0 Z;-Zzl :Zjﬂ (degv; + degv;)min{d (v}, vs),2}

_1 .
= 4n,m, Z;}il ;‘ijﬂ min{d (v, v),2}

+ny 25_211 o2j+1 (degy; + degvg)min{d (v}, vs),2}.
By the computations made for corona product, the last expression can be written as

dnymy(na(ny — 1) —my) +4nymy(ny — 1) — ny My (I3).
Taking the summation of these we get the result.

Corollary 4.2. Under the hypothesis of the last theorem, if diaml, < 2, then
STy o IL) =n,35(1) + 4nymuW () + 4nym W (1) + ny S(1).

4.4 CARTESIAN SUM

Definition 6. [17] Let I; = (V4, E;) and I, = (V,, E;) be two graphs. The cartesian sum of

I; and I, is defined as the graph I' = (V,E) given by V = V; x V, and
E={(wv)(x,y):ux € E;orvy € E,}.

We denote this graph by T'; @ T5,.

It is clear that cartesian sum of graphs commutes. Note that T'; @ T, contains I; o I,
as subgraph, in fact, the edges that are not considered in lexicographic product are those of
the form (u, v)(x, y), with u # x and vy € E,. Figure 4 shows the cartesian sum of P; with

Figure 4: A representation of P; o C,.
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Consider (u,v) a vertex of I'; @ I', and suppose that u, ..., u; are the neighbors of
u, then (u;, y) are neighbors of (u,v), for i =1,...,k and for all y € V/,, analogously, if
vy, ..., vy are the neighbors of v, then(x, v;) are neighbors of (u,v), for j = 1,...,1 and for
all x € V;. Thus, deg(u, v) = degu - |V,| + degv - |V;| — degu - degv.

Lemma 4.4. Let (u, v) and (x, y) be two vertices of I; @ I3, then

=[G

Proof. If (u,v)(x,y) € E, obviously they are at distance 1. If they are not
adjacent, consider a€cevl; and bev, such that ua € E; and
vb € E,, thus, (u,v)(a, b)(x,y) is a path. Hence, d((u, v), (x,y)) = 2.

Theorem 4.4. Let I =(V,E;)) and TI,=(V,E,) be two graphs, with
Vi={w,....,un}, Vo2 ={vy,...,vn,}, |Ei| =my and |E;| =m,. If I'=(V,E) is the
cartesian sum of I7 and I, then
S() = (4nymy —n3)My(Ty) + (dnymy — nf)My () — My (T) My (T7)
+4(ninym, + nin;my + 2mym, — 4n;nymym, — nim, — nim,).

Proof. First note that the formula for the Schultz index of T can be split by taking a sum
over all pairs of vertices which form edges and another sum over the rest of pairs of
vertices, that is,

S(I") = Yaper (dega + degb)d(a, b) + Y aper (dega + degb)d(a, b).
Analogous computations to those used for the corona product show that
S(0) = X2, 72, deg?(wy, v) + X2, X572, 2deg(u;, v)) (nyn, — (deg(uy, v)) + 1)).
For the first sum
Z?il 27}21 deg?®(u;, vj) = Z?il Z?ﬁl (npdegu; + n,degv; — deguidegvj)z
=Nty X2, (nfdeg?u; + nideg®v; + deg’u;deg?v
+ 2nyn,degu;degy; — 2n,degv;deg®u; — 2n,degu;deg?v))
= m3 3, BT, degtu +n2 Y, Y2, deg?y,
+Y2 deg’y, Z;Zl deg®v;
+2nyn, Y12, degy; Z?il degv; — 2n, X1, deg?y; Z;‘il degv;
—2ny 372, degu; X172, deg?v;
=n3 Ni2; deg’u; +ni Y72, deg’v; + N2, deg’u; 172, deg?v
+ 8nynymym, — 4nym, B2 deg?u; — 4nymy Y72, deg®v;
= (n3 — 4nymy)My () + (nf — 4nymy )M, (1) + My (T) My (T2)
+ 8nyny,mym,.
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And for the second
Yi2y X2, 2deg(u;, vy)(nyn, — (deg(u;, v)) + 1))

=2 Z?zll Z’;il (nydegu; + nydegv; — degu;degv;)(n n, — n,degu;
— n,degv; + degu;degv; — 1)
= 23, "% nlnydegy; — 231, X2, n2degtv; + 25, 2, nynidegu,
-2 Z?;l Z;.lil 3nyn,degu;degv; + 2 Z?;l Z}Zl 2n,degu;deg®v;
—23, 372, nydeg; — 25, B2, nddeglu; + 231, B2, 2n,degu;degy,
~23™, T2, nydegu; — 231, 312, degiu;deg?y; + 231, T2, degu;degy,
= 4ndn,m, — 2n3 Z’;ﬁl deg®v; + 4nyn3my — 24n;ny;mym,
+8nymy Y72, deg?v; — 4nfm, — 2n Y72, deg’u; + 8nym, X2, deg’y,
—4nimy — 232, deg’y; X2, deg®v; + 8mym,
= (8nym, — 2n3)M,(I,) + (8nym, — 2n3)M (Ty) + 4n3n,m, + 4n3nymy
—24n,n,m;m, — 4n?m, — 4nim, + 8mym, — 2M, (I, )M,(T,).

Taking the sum of these parts we obtain the formula.

5. CONCLUDING REMARKS

In this work we have obtained explicit formulas for the Schultz index of the
cartesian, corona and, lexicographic products, as well as of the cartesian sum, we observed
that the Schultz index of the first three products can be written in terms of the Schultz and
Wiener indices and the order and size of the factors, but for the cartesian sum is different, it
involves order, size and, Zagreb index of factors, this it also appears in the formula for the
lexicographic product. We noted once again how the close relationship between Schultz
and Wiener indices is reaffirmed by their emergence in those expressions.

There are still some questions to be answered; for example, can we find explicit
formulas for the Schultz index of some other products of graphs or for other indices?
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