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1. INTRODUCTION 

We consider only finite simple graph in this paper. Let ܩ be a finite simple graph on  
vertices and  edges. We denote the vertex set and the edge set of ܩ by ܸ(ܩ) and (ܩ)ܧ, 
respectively. The degree of a vertex ݒ௜ ∈  is denoted by ݀௜ and it is defined as the (ܩ)ܸ
number of edges incident with ݒ௜. Let Δ and ߜ denote the maximum vertex degree and the 
minimum vertex degree of the graph  ܩ, respectively. 

In chemical graph theory, one generally considers various graph-theoretical 
invariants of molecular graphs (also known as topological indices or molecular descriptors) 
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and study their correlation with various properties of the corresponding molecules. The 
first such topological index was introduced in 1947 by Harry Wiener and used for 
correlation with boiling points of alkanes. Wiener's index is related to the distances in 
molecular graphs. Historically, the first vertex-degree-based topological indices were the 
graph invariants that are now known as Zagreb indices. Numerous graph invariants have 
been (and continue to be) explored with varying degree of success in QSAR (quantitative 
structure-activity relationship) and QSPR (quantitative structure-property relationship) 
studies.  

The Zagreb indices are amongst the most studied invariants [11] and they are 
defined as sums of contributions dependent on the degrees of adjacent vertices over all 
edges of a graph. The Zagreb indices of a graph ܩ, i.e., the first Zagreb index ܯଵ(ܩ) and 
the second Zagreb index ܯଶ(ܩ), were originally defined [9] as follows.  
(ܩ)ଵܯ                                  = ∑ ݀௜ଶ௩೔∈௏(ீ) (ܩ)ଶܯ     , = ∑ ݀௜ ௩೔௩ೕ∈ா(ீ) ௝݀

 .      
The first Zagreb index of ܩ can also be expressed as ܯଵ(ܩ) = ∑ [݀௜ ௩೔௩ೕ∈ா(ீ) + ௝݀

 ]. 
Generalised version of the first Zagreb index has also been introduced [10], 

known as the general first Zagreb index, and is defined as  ܯଵ
௣(ܩ) = ∑ ݀௜

௣
௩೔∈௏(ீ) . 

When  ݌ = ଵܯ ,3
ଷ(ܩ) = ∑ ݀௜ଷ௩೔∈௏(ீ)  is known as the forgotten index  and is also 

equal to (ܩ)ܨ = ∑ [݀௜ଶ௩೔௩ೕ∈ா(ீ) + ௝݀
ଶ]. 

Owing to its reasonable prediction ability, the symmetric division deg index 
  has attracted considerable attention recently [1], [6]. It is defined as (ܩ)ܦܦܵ

(ܩ)ܦܦܵ  = ∑ ൤ௗ೔
 

ௗೕ
 +

ௗೕ
 

ௗ೔
 ൨௩೔௩ೕ∈ா(ீ) .  

Another important topological index is the harmonic index  whose chemical 
applicability was tested and found to be at par in correlation to the well-known Randić 
index [8]. It is defined as  (ܩ)ܪ = ∑ ଶ

ௗ೔
 ାௗೕ

 ௩೔௩ೕ∈ா(ீ) .  

Motivated by Randić, Zagreb and harmonic indices, Zhou and Trinajstić defined 
sum-connectivity index ߯(ܩ) [14] and general sum-connectivity index ߯ఈ(ܩ) [15],  ߙ is 
real, which are defined as follows: 

(ܩ)߯ = ∑  ௩೔௩ೕ∈ா(ீ)
ଵ

ටௗ೔
 ାௗೕ

 
 ;  ߯ఈ(ܩ) = ∑  ௩೔௩ೕ∈ா(ீ) [݀௜ + ݀௝ ]ఈ. 

Gutman recently introduced [7] a new vertex-degree-based topological index called 

the Sombor index, which is defined as ܱܵ(ܩ) = ∑ ට݀௜ଶ + ௝݀
ଶ

௩೔,௩ೕ∈ா(ீ) . The Sombor index 

has shown good predictive potential in its application to chemical graph theory [12]. 
Computations of Sombor index of various graphs have been carried out, for example 
chemical graphs [2]. Basic properties of the Sombor index have been presented and its 
relations with other topological indices: the Zagreb indices, are investigated in [3]. In [5] 
and [13], in addition to Zagreb indices, relations between Sombor index and other 
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topological indices are carried out. Motivated by such results, in this paper we present 
some new relations of Sombor index with other topological indices.  
 

2. RELATIONS BETWEEN SOMBOR INDEX AND OTHER  
TOPOLOGICAL INDICES 

In this section, we present some new results relating the Sombor index with some other 
topological indices: Zagreb indices, forgotten index, harmonic index, (general) sum-
connectivity index and symmetric division deg index. We first recall the following well-
known inequalities which are needed for our results in this section. 
 
Lemma 2.1 (Pólya-Szegö inequality [4]) Let ܽଵ, ܽଶ, … ,ܽ௠ and ܾଵ,ܾଶ, … ,ܾ௠  be two 
sequences of positive real numbers. If there exist real numbers ܣ,  and ܾ such that ܤ,ܽ
0 < ܽ ≤ ܽ௞ ≤ ܣ < ∞ and 0 < ܾ ≤ ܾ௞ ≤ ܤ < ∞ for ݇ = 1,2, … ,݉, then 

∑ ௔ೖ
మ೘

ೖసభ ∑ ௕ೖ
మ.೘

ೖసభ

൫∑ ௔ೖ
 ೘

ೖసభ ௕ೖ൯
మ ≤ (௔௕ା஺஻)మ

ସ௔௕஺஻
. 

Equality holds if and only if ݌ = ݉ ஺
௔

/ ቀ஺
௔

+ ஻
௕
ቁ , ݍ = ݉ ஻

௕
/ ቀ஺

௔
+ ஻

௕
ቁ are integers and if ݌ of 

the numbers ܽଵ,ܽଶ, … , ܽ௠ are equal to ܽ and ݍ of these numbers are equal to ܣ, and if the 
corresponding numbers ܾ௞  are equal to ܤ and ܾ, respectively. 
 
Lemma 2.2 (Radon’s inequality [3]) If ܽ௞, ܾ௞ > 0 for ݇ = 1,2, … ,݉  and ݌ > 0, then 

  ∑ ௔ೖ
೛శభ

௕ೖ
೛

௠
௞ୀଵ ≥ ൫∑ ௔ೖ

 ೘
ೖసభ ൯೛శభ

൫∑ ௕ೖ
 ೘

ೖసభ ൯೛
 

Equality holds if ௔భ
௕భ

= ௔మ
௕మ

= ⋯ = ௔೘
௕೘

. 
 

In [5] and [13], the upper bound of Sombor index involving forgotten index is 
presented which is an easy consequence of Cauchy-Schwarz inequality. More precisely, 
they found that for a graph with  edges  ܱܵ(ܩ) ≤ ඥ݉(ܩ)ܨ, where the equality holds if 
and only if ܩ is a regular graph. In [13], a lower bound for the same is also obtained in 
addition to a new upper bound ܱܵ(ܩ) ≤ ி(ீ)

ఋ√ଶ
. Here, we present a new lower bound for 

 .involving the forgotten index which is still tight for regular graphs (ܩ)ܱܵ
 
Theorem 2.3. Let ܩ be a graph on ݊ vertices and ݉ edges. Then  

ඥ݉(ܩ)ܨ ≤
1
2 ൬
ߜ
Δ+

Δ
൰ܱܵߜ

 .(ܩ)

Proof. Let ܸ(ܩ) = ,ଵݒ} ,ଶݒ … ௡}. Letting ܽ௞ݒ, → ට݀௜ଶ + ௝݀
ଶ and ܾ௞ =  in Lemma 2.1 ߜ2√ 

and choosing ܽ = ߜ2√ = ܾ and ܣ = √2Δ = B, we have 0 < ܽ ≤ ܽ௞ ≤ ܣ < ∞ and 
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0 < ܾ ≤ ܾ௞ ≤ ܤ < ∞ for ݇ = 1,2, … ,݉. Notice that (௔௕ା஺஻)మ 
ସ௔௕஺஻

 = ଵ
ସ
ቀఋ
୼

+ ୼
ఋ
ቁ
ଶ
. Applying the 

Lemma 2.1 with the sums running over the edges in ܩ, we have 
 

∑ [݀݅2 + ݆݀
2]∑ (ீ)ଶ௩೔௩ೕ∈ா(ீ)௩೔௩ೕ∈ாߜ2

ቆ∑ ට݀݅2ߜ2√  + ݆݀
2

௩೔௩ೕ∈ா(ீ) ቇ
ଶ ≤

1
4 ൬
ߜ
Δ+

Δ
൰ߜ

ଶ

. 

So, ி(ீ)௠
ௌை(ீ)మ

≤ ଵ
ସ
ቀఋ
୼

+ ୼
ఋ
ቁ
ଶ
. Hence ඥ݉(ܩ)ܨ ≤ ଵ

ଶ
ቀఋ
୼

+ ୼
ఋ
ቁ  █                                             .(ܩ)ܱܵ

 
In [5] and [13] bounds of Sombor index involving first Zagreb index were 

reported. More precisely, ଵ
√ଶ
(ܩ)ଵܯ ≤  where the equality is attained when the ,(ܩ)ܱܵ

graph is regular. Here we present a new lower bound of Sombor index involving first 
Zagreb index, ݉, ߜ and Δ. 

 
Theorem 2.4. Let ܩ be a graph on ݊ vertices and ݉ edges. Then   

2ඥ݉Δܯଵ(ܩ) ≤ ൬1 +
Δ
൰ܱܵߜ

 .(ܩ)

Proof. Let ܸ(ܩ) = ,ଵݒ} ,ଶݒ … ௡}. Letting ܽ௞ݒ, → ට݀௜ + ௝݀
  and ܾ௞ → ඨ

ௗ೔
మାௗೕ

మ

ௗ೔
 ାௗೕ

  in Lemma 

2.1 and choosing , ,  and , we have 0 < ܽ ≤ ܽ௞ ≤

ܣ < ∞ and 0 < ܾ ≤ ܾ௞ ≤ ܤ < ∞  for . Notice that (௔௕ା஺஻)మ 
ସ௔௕஺஻

 = ଵ
ସఋ୼

(Δ +
δ)ଶ. Applying the Lemma 2.1 with the sums running over the edges in ܩ, we have 

∑ [ௗ೔
 ାௗೕ

 ]∑
೏೔
మశ೏ೕ

మ

೏೔
 శ೏ೕ

 ೡ೔ೡೕ∈ಶ(ಸ)ೡ೔ೡೕ∈ಶ(ಸ)

൬∑   ටௗ೔
మାௗೕ

మ
ೡ೔ೡೕ∈ಶ(ಸ) ൰

మ ≤ ଵ
ସఋ୼

(Δ + δ)ଶ.                                        (1) 

Notice that 
ௗ೔
మାௗೕ

మ

ௗ೔
 ାௗೕ

 ≥ δ. So, ∑  ௩೔௩ೕ∈ா(ீ)
ௗ೔
మାௗೕ

మ

ௗ೔
 ାௗೕ

 ≥ ݉δ. Thus Equation (1) becomes ெభ(ீ)௠ఋ
ௌை(ீ)మ

≤

ଵ
ସఋ୼

(Δ+ δ)ଶ . Hence 2ඥ݉Δܯଵ(ܩ) ≤ ቀ1 + ୼
ఋ
ቁܱܵ(ܩ).                                                        █ 

 
Theorem 2.5. [13] Let ܩ be a connected graph on ݊ vertices and ݉ edges. Then   

1
√2

(ܩ)ଵܯ ≤ (ܩ)ܱܵ ≤ −(ܩ)ଵܯ
݉ߜ
2 −

ଶ݉ߜ
2√8Δଶ + ଶߜ + 4√2Δ

. 

 
Here we present a new upper bound of Sombor index involving first Zagreb index. 

 

Theorem 2.6. Let ܩ be a graph on ݊ vertices and ݉ edges. Then ܱܵ(ܩ) ≤ ඥ݉Δܯଵ(ܩ). 
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Proof. Let ܸ(ܩ) = ,ଵݒ} ,ଶݒ … ௡}. Letting ܽ௞ݒ, → ට݀௜ଶ + ௝݀
ଶ and ܾ௞ → ݀௜ + ௝݀ in Lemma 

2.2 with the sums running over the edges in ܩ and ݌ = 1, we have 

∑ ௗ೔
మାௗೕ

మ

ௗ೔
 ାௗೕ

 ௩೔௩ೕ∈ா(ீ) ≥
൬∑   ටௗ೔

మାௗೕ
మ

ೡ೔ೡೕ∈ಶ(ಸ) ൰
మ

∑ [ௗ೔
 ାௗೕ

 ]ೡ೔ೡೕ∈ಶ(ಸ)  
.                                        (2) 

Notice that 
ௗ೔
మାௗೕ

మ

ௗ೔
 ାௗೕ

 ≤ Δ. So, ∑  ௩೔௩ೕ∈ா(ீ)
ௗ೔
మାௗೕ

మ

ௗ೔
 ାௗೕ

 ≤ ݉Δ . Thus Equation (2) becomes  ௌை(ீ)మ

ெభ(ீ)
≤

݉Δ. Hence ܱܵ(ܩ) ≤ ඥ݉Δܯଵ(ܩ).                                                                                       █ 
 

Next, we present a relation between Sombor index and harmonic index and general 
sum-connectivity index. 
 
Theorem 2.7. Let ܩ be a graph on ݊ vertices and ݉ edges. Then  

(ܩ)ܱܵ ≤ ට୼
ଶ
 .(ܩ)χଶ(ܩ)ܪ

Proof. Let ܸ(ܩ) = ,ଵݒ} ,ଶݒ … ௡}. Letting ܽ௞ݒ, → ට݀௜ଶ + ௝݀
ଶ and ܾ௞ →  ଶ

ௗ೔ାௗೕ
 in Lemma 2.2 

with the sums running over the edges in G and p=1, we have 

൬∑   ටௗ೔
మାௗೕ

మ
ೡ೔ೡೕ∈ಶ(ಸ) ൰

మ

∑ మ
೏೔

 శ೏ೕ
 ೡ೔ೡೕ∈ಶ(ಸ)  

≤ ∑
ቂௗ೔
మାௗೕ

మቃ

ଶ௩೔௩ೕ∈ா(ீ) ൣ݀௜ + ௝݀
 ൧ = ∑ ௗ೔

మାௗೕ
మ

ଶቂௗ೔
 ାௗೕ

 ቃ௩೔௩ೕ∈ா(ீ) ൣ݀௜ + ௝݀
 ൧ଶ.          (3) 

Notice that 
ௗ೔
మାௗೕ

మ

ௗ೔
 ାௗೕ

 ≤ Δ. Thus Equation (3) becomes ௌை(ீ)మ

ு(ீ)
≤ ୼

ଶ
χଶ(ܩ). Hence ܱܵ(ܩ) ≤

ට୼
ଶ
 █                                                                                                                     .(ܩ)χଶ(ܩ)ܪ

 
Next, we present a relation between Sombor index and (general) sum-connectivity 

index. 
 
Theorem 2.8. Let ܩ be a graph on ݊ vertices and ݉ edges. Then  

(ܩ)ܱܵ  ≤ ටΔχ(ܩ)χଷ/ଶ(ܩ). 

Proof. Let ܸ(ܩ) = ,ଵݒ} ,ଶݒ … ௡}. Letting ܽ௞ݒ, → ට݀௜ଶ + ௝݀
ଶ and ܾ௞ →

ଵ

ටௗ೔
 ାௗೕ

 
 in Lemma 2.2 

with the sums running over the edges in G and p=1, we have 

൬∑   ටௗ೔
మାௗೕ

మ
ೡ೔ೡೕ∈ಶ(ಸ) ൰

మ

∑ భ
೏೔

 శ೏ೕ
 ೡ೔ೡೕ∈ಶ(ಸ)  

≤ ∑ ൣ݀௜ଶ + ௝݀
ଶ൧௩೔௩ೕ∈ா(ீ) ට݀௜ + ௝݀

 = ∑ ௗ೔
మାௗೕ

మ

ௗ೔
 ାௗೕ

 ௩೔௩ೕ∈ா(ீ) ൣ݀௜ + ௝݀
 ൧
య
మ.         (4) 
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Notice that 
ௗ೔
మାௗೕ

మ

ௗ೔
 ାௗೕ

 ≤ Δ. Thus Equation (4) becomes ௌை(ீ)మ

஧(ீ)
≤ Δχయ

మ
(ܩ)ܱܵ Hence .(ܩ) ≤

ටΔχ(ܩ)χଷ/ଶ(ܩ).                                                                                                                   █ 

 
In [13], bounds of Sombor index involving second Zagreb index is presented. Here, 

we present a new relation between Sombor index and second Zagreb index. Our bound and 
approach are different. First, we present the following relation of Sombor index involving 
second Zagreb index and symmetric division deg index. 
 
Theorem 2.9. Let ܩ be a graph on ݊ vertices and ݉ edges. Then 

(ܩ)ܱܵ ≤ ඥܯଶ(ܩ)ܵ(ܩ)ܦܦ. 
 

Proof. We first recall the Cauchy-Schwarz inequality. Let ܽଵ,ܽଶ, … , ܽ௠ and  
be two sequences of real numbers. Then  (∑ ܽ௞ܾ௞௠

௞ୀଵ )ଶ ≤ ∑ ܽ௞ଶ௠
௞ୀଵ ∑ ܾ௞ଶ.௠

௞ୀଵ  Let ܸ(ܩ) =

,ଶݒ,ଵݒ} … ௡} and letting ܾ௞ݒ, → ඨ
ௗ೔
మାௗೕ

మ

ௗ೔ௗೕ
 in the Cauchy-Schwarz inequality with the sums 

running over the edges in ܩ, we have 

               ൬∑   ට݀௜ଶ + ௝݀
ଶ

௩೔௩ೕ∈ா(ீ) ൰
ଶ

≤ ∑   ݀௜ ௝݀ ∑   
ௗ೔
మାௗೕ

మ

ௗ೔ௗೕ௩೔௩ೕ∈ா(ீ)௩೔௩ೕ∈ா(ீ)  

                                                               = ∑   ݀௜ ௝݀ ∑ ൬ௗ೔
ௗೕ

+ ௗೕ
ௗ೔
൰  ௩೔௩ೕ∈ா(ீ)௩೔௩ೕ∈ா(ீ)                

                                                        =  .(ܩ)ܦܦܵ(ܩ)ଶܯ

Hence ܱܵ(ܩ) ≤ ඥܯଶ(ܩ)ܵ(ܩ)ܦܦ.                                                                                       █ 
 

As a corollary, we now present a bound of Sombor index involving second Zagreb 
index. 
 
Corollary 2.10. Let ܩ be a graph on ݊ vertices and ݉ edges. Then    

(ܩ)ܱܵ                                                     ≤ ටቀఋ
୼

+ ୼
ఋ
ቁ݉ܯଶ(ܩ). 

Proof. Since 0 < ߜ ≤ ݀௜ ≤ Δ for any , we have ఋ
୼
≤ ௗ೔

ୢౠ
≤ ୼

ఋ
. Now for any edge ݒ௜ݒ௝ of G 

(݀௜ ≥ ௝݀), we have 

൬ௗ೔
ௗೕ

+ ௗೕ
ௗ೔
൰
ଶ

= ൬ௗ೔
ௗೕ
− ௗೕ

ௗ೔
൰
ଶ

+ 4 ≤ ቀఋ
୼
− ୼

ఋ
ቁ
ଶ

+ 4 = ቀఋ
୼

+ ୼
ఋ
ቁ
ଶ
. 

Thus ܵ(ܩ)ܦܦ ≤ ݉ቀఋ
୼

+ ୼
ఋ
ቁ. Hence from Theorem 2.9 we obtain the desired result.          █ 
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